对于参与研究和发现针对这些病原体的新型且更有效的抗菌剂,革兰氏阳性病原体细菌中的多药耐药性是与研究和发现新的且更有效的抗菌剂有关的科学界最为明显的挑战之一。Linezolid, an oxazolidinone antibiotic, is effective for the treatment of infections caused by Gram- positive pathogens resistant to other antibiotics including methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and penicillin-resistant Streptococcus pneumoniae [ 1 ].良好的药代动力学和有毒作用利录,与人类口服或静脉内给药一致,代表了显着特征,这些特征使Linezolid成为巨大成功的抗生素[2],也显示出适合降低耐药性发生的几种特征。的确,LineZolid是一种完全合成的药物。因此,没有预期的自然且预先存在的抗性基因可以缓解耐药机制的出现。此外,它具有独特的作用机理,该机制在非常早的阶段靶向细菌蛋白质的合成[3],因此,药物和商业上可用的抗菌药物之间的交叉耐药性将是遥远的。在任何情况下,抗二唑酚耐药细菌的识别[4]已经强调了需要绕开耐药性的不同靶标的新的恶唑烷酮型药物。正在进行结构变化和改进特征的新的恶唑烷酮研究,研究领域非常活跃[5]。在本文中,我们描述了这些linezolid类似物之一,称为10f。在先前的论文[6]中,我们描述了在C-5位置具有尿素和硫库功能的未报告的线索酚类似物的设计,合成和初步抗菌活性。了解这种类似物的作用机理,产生了金黄色葡萄球菌的抗性突变体。
肺动脉高压(PAH)是一种复杂的多因素疾病,预后较差,其特征是肺循环的功能和结构改变,导致肺血管耐药性明显增加(PVR),最终导致心脏失败和死亡。编码骨形态发生蛋白受体2型(BMPR2)的基因中的突变,一种转化生长因子β(TGF-β)超家族的受体,占PAH家庭的70%以上,大约20%的零星病例。近年来,在其他基因中已经发现了较少或罕见的突变。本综述将考虑这些新发现的PAH基因如何有助于更好地理解肺血管完整性的维持的分子和细胞基础,以及它们在肺中动脉闭塞的PAH发病机理中的作用。我们还将讨论如何对这些新的PAH相关基因的遗传贡献的见解为目前无法治愈的心肺疾病打开新的治疗靶标。
摘要金黄色葡萄球菌是菌血症和其他医院感染的主要原因。细胞壁活性抗生素万古霉素通常用于治疗耐甲氧西林(MRSA)和敏感(MSSA)感染。万古霉素中间的金黄色葡萄球菌(Visa)变体可以通过从头突变产生。在这里,我们进行了试点实验,以开发一种基于PCR/长阅读测序的合并的方法,用于检测先前已知的签证突变。引物旨在生成10个含量涵盖与签证表型相关的16个基因。我们对牛津纳米孔衔接子的读数长期读取,我们对据和and go骨流通量进行了测序。然后,我们通过映射读取读取的父母共识或已知参考序列,并比较称为变体与实验室选择中已知签证突变的数据库进行了比较。池中的每个扩增子被测序为高(。1,000)覆盖范围,并且在扩增子长度和覆盖范围之间未发现任何关系。我们还能够检测到因果突变(步行646c。g)在源自USA300菌株的签证突变体中(来自父母菌株N384的N384-3)。将突变体(N384-3)和父母(N384)DNA从0到1个突变体以不同的比例(N384)DNA表明平均次要等位基因频率(6.5%)的突变检测阈值在95%侧置(两个标准的差异高于平均突变频率高于平均值的频率))。该研究奠定了直接的金黄色葡萄球菌抗生素抗生素基因型基因型推断,并使用临床样品的快速纳米孔测序。
摘要:金黄色葡萄球菌是一种常见的人类共生病原体,可引起多种传染病。由于抗生素耐药性的产生,病原体对越来越多的抗生素产生耐药性,从而产生了耐甲氧西林金黄色葡萄球菌 (MRSA) 甚至耐多药金黄色葡萄球菌 (MDRSA),即“超级细菌”。这种情况凸显了对新型抗菌药物的迫切需求。细菌转录负责细菌 RNA 的合成,是开发抗菌药物的有效但未充分利用的靶点。之前,我们报道了一类新型抗菌药物,称为 nusbiarylins,它通过中断两种转录因子 NusB 和 NusE 之间的蛋白质-蛋白质相互作用 (PPI) 来抑制细菌转录。在这项工作中,我们根据 nusbiarylins 的化学结构及其对金黄色葡萄球菌的活性开发了一种基于配体的工作流程。整合了基于配体的模型(包括药效团模型、3D QSAR、AutoQSAR 和 ADME/T 计算),并用于以下 ChemDiv PPI 数据库的虚拟筛选。结果,四种化合物(包括 J098-0498、1067-0401、M013-0558 和 F186-026)被鉴定为针对金黄色葡萄球菌的潜在抗菌剂,预测的 pMIC 值范围为 3.8 至 4.2。对接研究表明这些分子与 NusB 紧密结合,结合自由能范围为 -58 至 -66 kcal/mol。
1960 年代,耐甲氧西林金黄色葡萄球菌(MRSA)开始出现,并有报道呈波浪式出现(Strausbaugh et al ., 1996)。国家医院感染监测系统的数据报告,重症监护病房中耐甲氧西林金黄色葡萄球菌菌株数量急剧增加,达到 59.5%-64.4%(Klevens et al., 2006)。目前已知的葡萄球菌的药物靶点包括肽聚糖生物合成途径的青霉素结合蛋白。以前,β-内酰胺类抗生素对葡萄球菌非常有效。此外,由于改良型青霉素结合蛋白的生物合成和β-内酰胺酶的生物合成,这些药物现在不再有效 (Kong et al .,2010)。全世界都在关注研究一种以前未曾研究过的抗生素的可能性。
特应性皮炎(AD)是一种皮肤炎症性疾病,其中机会性病原体金黄色葡萄球菌既普遍又丰富。S.金黄色葡萄球菌具有几种分泌的毒力因子,这些因子在感染模型中具有良好的功能,但尚不清楚这些细胞外微生物因子是否在AD的背景下是否相关。为了解决这个问题,我们设计了一种与文化无关的方法来检测和量化在皮肤部位表达的金黄色葡萄球菌毒力因子。我们利用rnase-h - 依赖性多重PCR进行了从胶带中提取的反转录的RNA的前透明化,这些RNA从具有不同严重程度的皮肤部位采样的患者的胶带条中提取,并评估了使用qPCR使用QPCR的S. aureus毒力因子的表达。我们观察到疾病严重程度增加的位点可行的金黄色葡萄球菌丰度增加,并且在AD皮肤部位表达了许多毒力因子。令人惊讶的是,与非静电对照相比,我们没有观察到病变部位的毒力因子的任何显着性。总体而言,我们利用了一个可靠的测定法直接检测和量化AD皮肤病变部位的可行金黄色葡萄球菌及其相关的毒力因子。该方法可以扩展以研究各种皮肤病学部位的皮肤微生物基因的表达。
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验来定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象异构体并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
收到日期:2021 年 9 月 30 日;接受日期:2022 年 3 月 6 日;发布日期:2022 年 5 月 13 日 作者隶属关系:1 中佛罗里达大学,4110 Libra Drive,奥兰多,佛罗里达州 32816,美国;2 约翰霍普金斯大学彭博公共卫生学院,415 North Washington Street,巴尔的摩,马里兰州 21231,美国。 *通讯作者:Catherine G. Sutcliffe,csutcli1@jhu.edu 关键词:携带;基因组流行病学;美洲原住民;系统发育;金黄色葡萄球菌。缩写:AN,前鼻孔;CA-MRSA,社区相关耐甲氧西林金黄色葡萄球菌;CC,克隆复合体;CI,置信区间;gDNA,基因组 DNA;IHS,印度健康服务局;IRB,机构审查委员会; MLST,多位点序列分型;MRSA,耐甲氧西林金黄色葡萄球菌;MSSA,甲氧西林敏感金黄色葡萄球菌;NP,鼻咽癌;ONT,牛津纳米孔技术;OP,口咽癌;PR,患病率;SCC mec,葡萄球菌盒式染色体 mec ;ST,序列类型;WGS,全基因组测序。‡现地址:美国辉瑞公司全球肺炎球菌疫苗、科学事务和流行病学部。金黄色葡萄球菌基因组序列的 NCBI SRA 接入号在补充文件 S1 中给出。†这些作者对这项工作贡献相同数据声明:所有支持数据、代码和协议均已在文章中或通过补充数据文件提供。本文的在线版本提供一个补充文件和四个补充表格。 000806 © 2022 作者
抗生素耐药性是公共卫生面临的一大挑战,过去的一年里这一问题愈演愈烈 [1, 2]。对于由细菌病原体金黄色葡萄球菌引起的感染尤其如此,这种感染是导致死亡的主要原因,通常与社区获得性耐药菌株 (MRSA) 有关 [3]。这就迫切需要找到新的解决方案,以便有效地诊断和治疗,克服耐药性,避免抗生素库的耗尽。需要金黄色葡萄球菌内的新蛋白质靶点来开发有效的诊断探针,既可用于成像应用,也可用于治疗策略,以阻断细菌的生产性感染,而不会迫使生物体选择耐药突变体。基于氟膦酸酯的活性探针在促进生物膜生长的条件下,鉴定出金黄色葡萄球菌中十种以前未鉴定的活性丝氨酸水解酶,这可以满足这一需求。这些酶被命名为氟膦酸酯结合水解酶 (Fphs),每个酶的字母顺序取决于其预测大小 (52 kD FphA – 22 kD FphJ) [4]。它们都是 α/β 水解酶超家族的成员,其特点是核心由八个 β 链组成,这些 β 链由几个 α 螺旋连接,活性位点为丝氨酸-组氨酸-天冬氨酸或谷氨酸三联体。亲核丝氨酸用于水解底物,小分子可以轻松且特异性地靶向 [5, 6]。一般来说,这些蛋白质在代谢物、肽和脂质的加工中起着重要作用,是控制细胞信号传导和代谢的一种手段;然而,到目前为止,所有 Fphs 的生物学功能仍然未知,只有 FphF 的结构被确定 [6, 7]。它们在生物膜形成条件下的活性状态使它们易于通过化学抑制剂进行修饰,从而开发成探针和药物。这种新化合物