- 在5至300 K的范围内研究了它们,并在室温下观察到铁磁相。P3HT中磁矩的起源及其铁磁相互作用与在氧化/还原过程中聚合物链中的极性形成有关。关键字:导电聚合物,铁磁性,poly(3-己基滋养)(P3HT)。在5至300 K的温度范围内研究了摘要的聚集(3-己基噻吩)(P3HT)磁力特性,并在环境处发现了铁电磁相。P3HT中磁矩的起源及其铁磁相互作用与聚合物链中极性链氧化/还原过程中极性子的形成有关。关键字:导电聚合物,铁磁剂,poly(3-己基噻吩)。
氧化物异质结构中的界面电荷转移产生了丰富的电子和磁现象。设计异质结构,其中一个薄膜成分表现出金属-绝缘体转变,为静态和动态控制此类现象开辟了一条有希望的途径。在这项工作中,我们结合深度分辨的软 x 射线驻波和硬 x 射线光电子能谱以及偏振相关的 x 射线吸收光谱,研究了 LaNiO 3 中的金属-绝缘体转变对 LaNiO 3 /CaMnO 3 界面处电子和磁态的影响。我们报告了在金属超晶格中直接观察到的界面 Mn 阳离子的有效价态降低,该超晶格具有高于临界的 LaNiO 3 厚度(6 个晶胞,uc),这是由流动的 Ni 3 deg 电子向界面 CaMnO 3 层中的电荷转移促成的。相反,在厚度低于临界值 2u.c. 的 LaNiO 3 绝缘超晶格中,由于界面电荷传输受阻,整个 CaMnO 3 层中观察到 Mn 的有效价态均匀。切换和调节界面电荷传输的能力使得能够精确控制 LaNiO 3 /CaMnO 3 界面上出现的铁磁状态,因此对下一代自旋电子器件的未来设计策略具有深远的影响。
本综述介绍了采用铁磁共振电动力学理论测量铁磁线宽、磁导率张量和饱和磁化强度的最新进展。结果表明,与常用的微扰和静磁理论相比,电动力学理论可以显著提高这些参数的测量精度。与微扰法相反,电动力学理论并不局限于小样本。它允许在适当选择的金属外壳中确定任意尺寸的球形和圆柱形旋磁样品的共振频率和 Q 因子。用电动力学理论对非常小的样本得到的结果与用微扰和静磁理论得到的结果相同。给出了微波频率下铁磁线宽、磁导率张量和饱和磁化强度的测量结果。
由残留的恶性细胞和癌症干细胞引起的肿瘤。 [2]此外,由于手术清除肿瘤,可能会丢失大量健康组织。 癌症治疗的成功可以通过消除恶性细胞的能力,同时最大程度地减少对健康组织的损害和维持功能的能力来衡量。 此外,健康组织的再生取决于处理后干细胞的存活。 因此,需要互补的临床策略来消除恶性细胞的抵抗力,同时使患者福祉和生活质量成为可能。 高温(HT)是一种通过热量诱导癌细胞死亡的方法,它使用非电离辐射或对流方法在人体靶向区域中升高温度(至≈40–45°C),而磁性超细热(MHT)则使用局部纤维素颗粒型磁性磁性磁性磁性磁性磁性的磁性高温(MHT)。 [7–9] MHT已与放疗和化学疗法相结合,作为药物递送的策略。 [10] MHT的主要好处涉及其治疗特定癌症的能力,同时避免了危险的全身效应。 [11]此外,MHT在最低侵入性(即,在肿瘤内或通过静脉内递送),与放射疗法或化学疗法相比,具有轻度的副作用[10],并且显示出具有许多癌症治疗的协同作用,例如,癌症治疗,例如,甲基疗法,[12]药物治疗,[12]药物治疗[14] [13] [13] [13] [13]。 [15]。[2]此外,由于手术清除肿瘤,可能会丢失大量健康组织。癌症治疗的成功可以通过消除恶性细胞的能力,同时最大程度地减少对健康组织的损害和维持功能的能力来衡量。此外,健康组织的再生取决于处理后干细胞的存活。因此,需要互补的临床策略来消除恶性细胞的抵抗力,同时使患者福祉和生活质量成为可能。高温(HT)是一种通过热量诱导癌细胞死亡的方法,它使用非电离辐射或对流方法在人体靶向区域中升高温度(至≈40–45°C),而磁性超细热(MHT)则使用局部纤维素颗粒型磁性磁性磁性磁性磁性磁性的磁性高温(MHT)。[7–9] MHT已与放疗和化学疗法相结合,作为药物递送的策略。[10] MHT的主要好处涉及其治疗特定癌症的能力,同时避免了危险的全身效应。[11]此外,MHT在最低侵入性(即,在肿瘤内或通过静脉内递送),与放射疗法或化学疗法相比,具有轻度的副作用[10],并且显示出具有许多癌症治疗的协同作用,例如,癌症治疗,例如,甲基疗法,[12]药物治疗,[12]药物治疗[14] [13] [13] [13] [13]。[15]
简单总结:在本文中,我们回顾了过去十年的知识进展,得益于许多学者和研究人员的投入,这些进展已经阐明了与铁死亡及其与癌症的关系有关的许多方面。铁死亡目前被认为是一种独特的受调节细胞死亡 (RCD) 类型,其特征是铁依赖性氧化应激和致命氧化脂质的积累。重点关注最近的文献,强调了铁稳态、氧化应激和脂质代谢之间的联系,这些联系总体上调节了铁死亡细胞死亡。此外,特别关注了这种 RCD 通路可能作为肿瘤抑制机制的激活。从调控和分子角度深入了解它可以为开发治疗对常规疗法有耐药性的肿瘤的新候选药物提供重要信息。
1美国亚特兰大埃默里大学医学院Winship Cancer Institute的血液学和医学肿瘤学系,美国佐治亚州30322; nfsaba@emory.edu 2 Wallace H. Coulter生物医学工程系,佐治亚理工学院和埃默里大学,亚特兰大,佐治亚州亚特兰大,佐治亚州30322,美国3美国,西南大学药物科学和中医学院,西南大学,中国北部400715,中国; lx126001@126.com 4 Otorhinolaryngology-Head and Neck Surgery系,赫尔辛基大学和赫尔辛基大学医院的系统肿瘤学研究计划,芬兰赫尔辛基,赫尔辛基大学医院; antti.makitie@helsinki。 e likek@ump.edu.pl 6 Poznan医学科学大学药理学系,波兰Poznan 60-806; agata.czarnywojtek@ump.edu.pl 7内分泌学系,代谢和内科医学系,波兹南医学科学大学,Przybyszewskiego 49,60-355 Poznan,Poland 8,Poland 8,国际高级和颈部科学科学的协调员,35125 PADUA,ITALE,ITALE,ITALE; profalfirlito@gmail.com *通信:yong.teng@emory.edu;电话。 : +1-(404)-712-8514†这些作者对这项工作也同样贡献。1美国亚特兰大埃默里大学医学院Winship Cancer Institute的血液学和医学肿瘤学系,美国佐治亚州30322; nfsaba@emory.edu 2 Wallace H. Coulter生物医学工程系,佐治亚理工学院和埃默里大学,亚特兰大,佐治亚州亚特兰大,佐治亚州30322,美国3美国,西南大学药物科学和中医学院,西南大学,中国北部400715,中国; lx126001@126.com 4 Otorhinolaryngology-Head and Neck Surgery系,赫尔辛基大学和赫尔辛基大学医院的系统肿瘤学研究计划,芬兰赫尔辛基,赫尔辛基大学医院; antti.makitie@helsinki。 e likek@ump.edu.pl 6 Poznan医学科学大学药理学系,波兰Poznan 60-806; agata.czarnywojtek@ump.edu.pl 7内分泌学系,代谢和内科医学系,波兹南医学科学大学,Przybyszewskiego 49,60-355 Poznan,Poland 8,Poland 8,国际高级和颈部科学科学的协调员,35125 PADUA,ITALE,ITALE,ITALE; profalfirlito@gmail.com *通信:yong.teng@emory.edu;电话。: +1-(404)-712-8514†这些作者对这项工作也同样贡献。
© 作者 2025。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问:http://creativecommons.org/licicenses/by/4.0/ 。
自从在 Cr 2 Ge 2 Te 6 [1] 和 CrI 3 [2] 的单层和双层中发现长程磁序以来,许多单层或几层厚度的(反)铁磁范德华材料已被发现。由于层间和层内交换以及磁各向异性的相互作用导致自旋纹理丰富,它们是自旋电子学的理想平台。许多反铁磁范德华材料在低温下是电绝缘的,这意味着不存在自由载流子引起的磁化衰减。因此,它们对于研究磁序的集体激发,即自旋波及其量子,磁振子 [3, 4] 具有吸引力。传统磁体中的磁振子输运已得到广泛研究,例如,通过自旋泵浦 [5]、自旋塞贝克效应 (SSE) [6] 和电磁振子自旋注入/检测 [7]。反铁磁体赤铁矿 [8]、氧化镍 [9] 和 YFeO 3 [10] 中的长距离磁振子传输已被证实。低阻尼亚铁磁钇铁石榴石 (YIG) 超薄膜是高效磁振子传输的首选材料,它以强烈增强的磁振子电导率形式显示出二维 (2D) 相对于三维 (3D) 传输的有益效应 [11]。温度梯度驱动的磁振子自旋输运 (SSE) [12] 已被报道存在于铁磁和反铁磁范德华材料中 [13, 14]。然而,局部和非局部 SSE 仅提供有关磁振子传输特性的复杂信息。热磁振子电流是由整个样品中的热梯度产生的,因此很难区分磁振子弛豫长度和磁振子自旋电导率 [7, 11]。CrCl 3 [15] 的反铁磁共振揭示了声学和光学磁振子模式的存在,但并未解决它们在自旋输运中的作用。因此,为了评估范德华磁体在自旋电子学应用中的潜力,我们必须研究由微波或我们将在此处展示的电注入局部产生的磁振子的传播。
我们研究了范德华(VDW)分层CRCL 3的磁性和磁性性能,并通过磁化和热容量测量值进行了磁性和磁性特性。crcl 3由于铁磁和防铁磁相互作用之间的强烈竞争而表现出复杂的磁性特性:一种约17 k的铁磁秩序,然后在14.3 k处进行防铁磁有序。在14.3 K.观察到在过渡温度附近7 t的场变化,而在18 K和0-3 T处的机械效率(G M)为1.17。磁电参数的这些值比CRI 3和其他分层VDW系统的值明显大。缩放分析表明,所有重新缩放的D S M(T,H)数据崩溃成单个曲线,这表明磁相变的二阶性质。上面的结果表明,环保的CRCL 3可以是非常昂贵的稀土材料的绝佳选择,用于用于液化液化的磁性冷藏。