摘要人类铁稳态的一种中心调节机制涉及铁蛋白(FPN),唯一的细胞铁出口剂和肽激素肝激素,它抑制了Fe 2+ trans- trans-并诱导FPN的内在化和降解。FPN/肝素轴的失调导致病理条件的不同,因此,抑制FPN介导的铁运输的药理学化合物具有很高的临床意义。 在这里,我们描述了与合成纳米型和Vamifeport(VIT-2763)的复合物中人类FPN的低温微拷贝结构,这是第一个临床阶段的口服FPN抑制剂。 vamifeport与肝素竞争FPN结合,目前正处于β-丘脑和镰状细胞病的临床发展中。 结构显示了FPN的两个不同构象,代表了转运蛋白的向外和遮挡状态。 vamifeport位点位于蛋白质的中心,在该蛋白质中,与肝素相互作用的重叠基于两个分子之间的竞争关系。 在Vamifeport的结合袋中引入点突变会降低其与FPN的亲和力,强调结构数据的相关性。 一起,我们的研究揭示了FPN的构象重排,这与运输具有潜在相关性,并且它提供了对这种独特的铁外乘转运蛋白的药理靶向的初步见解。导致病理条件的不同,因此,抑制FPN介导的铁运输的药理学化合物具有很高的临床意义。在这里,我们描述了与合成纳米型和Vamifeport(VIT-2763)的复合物中人类FPN的低温微拷贝结构,这是第一个临床阶段的口服FPN抑制剂。vamifeport与肝素竞争FPN结合,目前正处于β-丘脑和镰状细胞病的临床发展中。结构显示了FPN的两个不同构象,代表了转运蛋白的向外和遮挡状态。vamifeport位点位于蛋白质的中心,在该蛋白质中,与肝素相互作用的重叠基于两个分子之间的竞争关系。在Vamifeport的结合袋中引入点突变会降低其与FPN的亲和力,强调结构数据的相关性。一起,我们的研究揭示了FPN的构象重排,这与运输具有潜在相关性,并且它提供了对这种独特的铁外乘转运蛋白的药理靶向的初步见解。
摘要:磷脂酰肌醇3-激酶(PI3KS)是一个细胞内信号传感器酶的家族,可以将磷酸组连接到膜上膜的磷脂酰磷脂酰糖脂(PI)的3'-羟基的3'-羟基。PI3KS已显示在细胞增殖,生长,生存,运动和代谢中起重要作用。尽管如此,PI3K途径也已显示在几种肿瘤中,尤其是B细胞恶性肿瘤。近年来,PI3K信号通路已成为大量药物发现和开发工作的主要重点。选择性(PI3K)抑制剂已被批准用于治疗慢性淋巴细胞性白血病(CLL)/小淋巴细胞淋巴瘤(SLL),以及不固定的非霍奇金淋巴瘤(INHL),例如卵形淋巴瘤和山胶瘤和洋麦氮障碍瘤。四种选择性PI3K抑制剂已获得加速FDA批准,用于治疗患有复发/难治性(R/R)CLL和/或INHL的患者,主要基于单臂II期研究:IDELALISIB(PI3K-δ抑制剂),Copanlisib(dual Pi3K-α和Pulual pulual pulual dulual pulual pulual pulual)(pulual pulual)(pulual pulual)(pulual pulual)(pulual)(prevel)(PULUAL)(PISIB)(PILAUM)(PILAUM)(PIS)(PIS)(PULUAL)(PULAUM) PI3K-γ和PI3K-δ抑制剂)和雨伞(双PI3Kδ和CK1ε抑制剂)。相反,与对照组中的患者相比,涉及其中一些药物的随机对照试验(RCT)的最新临时结果(RCT)显示出令人担忧的总生存期(OS)降低(OS)的趋势,致命和严重不良反应的增加。关键字:磷脂酰肌醇-3激酶,血液系统恶性肿瘤,临床试验,安全性,安全性,加速批准Consequently, the class of PI3K inhibitors came under scrutiny, with an FDA expert panel voting on April 21, 2022, recommending that future FDA approvals of PI3K inhibitors be supported by randomized data, rather than single-arm data only, and further discontinuing the use of almost all the PI3K inhibitors in hematologic malignancies.我们认为需要进一步的研究来通过改善其安全性概况来帮助潜在的PI3K抑制剂,因此这种迷你审查旨在重新审视这类药物的临床成功,失败以及有希望的方面,同时提出可能有利于其成功发展的可能方法。
目的:本研究旨在开发一个装饰有适体(APS)和转铁蛋白(TF)的二元纳米夹纸系统,并装有daunorubicin(drn)和叶黄素(LUT)(LUT)来治疗白血病。方法:分别设计和合成寡核苷酸AP和含TF的配体。AP装饰的DRN纳米颗粒(AP-DRN NP)和TF-LUT NP。通过AP-DRN NPS和TF-LUT NP的自组装制备AP和LUT-CORODAD的DRN和LUT-CORODAR-CORODAD的纳米递送系统(AP/TF-DRN/LUT NPS)。与单个配体装饰,单个药物 - 负载和自由药的配方相比,在白血病细胞系和含细胞小鼠模型上评估了系统的体外和体内效率。结果:AP/TF-DRN/LUT NP是球形和纳米化的(187.3±5.3 nm),并装有约85%的药物。AP/TF-DRN/LUT NP的体外细胞毒性高于单个配体装修的细胞毒性。 双药物载有AP/TF-DRN/LUT NP的肿瘤细胞抑制比单一药物抑制更高,这表现出两种药物的协同作用。 ap/tf-drn/lut nps达到了最有效的抗血性活性和体内毒性。 结论:本研究表明,由于这两种药物在该系统中的协同作用,AP/TF-DRN/LUT NP是一种有前途的药物分娩系统,用于对白血病的靶向治疗。 该系统的局限性包括在大规模生产过程中的稳定性以及从长凳到床边的应用。 关键字:急性髓细胞白血病,daunorubicin,Luteolin,Aptamer,Transferrin,nanodrug-delivery SystemAP/TF-DRN/LUT NP的体外细胞毒性高于单个配体装修的细胞毒性。双药物载有AP/TF-DRN/LUT NP的肿瘤细胞抑制比单一药物抑制更高,这表现出两种药物的协同作用。ap/tf-drn/lut nps达到了最有效的抗血性活性和体内毒性。结论:本研究表明,由于这两种药物在该系统中的协同作用,AP/TF-DRN/LUT NP是一种有前途的药物分娩系统,用于对白血病的靶向治疗。该系统的局限性包括在大规模生产过程中的稳定性以及从长凳到床边的应用。关键字:急性髓细胞白血病,daunorubicin,Luteolin,Aptamer,Transferrin,nanodrug-delivery System
图 1 – DCFHP 设计和验证。(A) DCFHP 示意图以红色显示了将 S∆C-Fer 转化为 DCFHP 所做的修改。受体结合域 (RBD)、N 端域 (NTD)、S1/S2 切割位点、S2' 切割位点、融合肽 (FP)、七肽重复 1 (HR1),如注释所示。(B) SDS-PAGE 凝胶显示纯化的 DCFHP 以单体形式运行,分子量达到预期的 kDa(梯形图,左侧显示)。(C) 从 SEC-MALS 确定的 UV(黄色)和光散射(灰色)轨迹显示了均匀的纳米颗粒峰,其近似分子量(虚线)为 3.4MDa。(D) DCFHP 的 3D 重建低温电子显微镜密度图,采用八面体对称性细化。 (E) 用 S∆C-Fer 或 DCHFP(由 500 µg 明矾和 20 µg CpG 1826 配制)免疫小鼠后,第 21 天血清对武汉-1 SARS-CoV-2 假病毒具有类似的强效中和作用,单次免疫后即可达到。在表达 ACE2 和 TMPRSS2 的 HeLa 细胞系中评估中和滴度。10 只小鼠的数据以几何平均滴度和标准差表示。测定定量限 (LOQ) 显示为虚线水平线。
摘要简介:最近的研究表明,雷帕霉素作为哺乳动物雷帕霉素靶点 (mTOR) 抑制剂,可能对中枢神经系统 (CNS) 相关疾病产生有益的治疗作用。然而,雷帕霉素的免疫抑制作用作为不良反应、低水溶性、体内快速降解以及血脑屏障相关的挑战限制了该药物在脑部疾病的临床应用。为了克服这些缺点,设计和开发了一种含有雷帕霉素的转铁蛋白 (Tf) 修饰的纳米结构脂质载体 (NLC)。方法:使用溶剂扩散和超声处理法制备载雷帕霉素的阳离子和裸 NLC,并进行充分表征。最佳阳离子 NLC 用 Tf 进行物理修饰。对于体外研究,评估了 U-87 MG 胶质母细胞瘤细胞的 MTT 测定和纳米粒子的细胞内摄取。通过荧光光学成像评估纳米粒子的动物生物分布。最后,还研究了 NLC 对免疫系统的体内影响。结果:球形 NLC 粒径小,范围从 120 到 150 nm,包封率高,超过 90%,细胞存活率≥80%。更重要的是,与裸露的 NLC 相比,Tf 修饰的 NLC 在孵育 2 小时后显示出明显更高的细胞摄取率(97% vs 60%),并且进一步在小鼠脑内有适当的蓄积,在非靶向组织中的摄取率较低。令人惊讶的是,载有雷帕霉素的 NLC 没有表现出免疫抑制作用。结论:我们的研究结果表明,设计的 Tf 修饰的 NLC 可以被视为一种安全有效的雷帕霉素靶向脑递送载体,这可能在临床治疗神经系统疾病方面具有重要价值。
摘要:血脑屏障 (BBB) 由脑内皮细胞 (BEC) 构成,生物制剂无法通过。脂质体和其他纳米颗粒是将生物制剂递送至 BEC 的良好候选物,因为它们可以万能地包裹大量目标分子。脂质体需要附着靶向分子,因为不幸的是,BEC 几乎无法从循环中吸收非靶向脂质体。独立研究小组的实验已证实,靶向转铁蛋白受体的抗体在将纳米颗粒靶向递送至 BEC 方面更胜一筹。通过与抗转铁蛋白受体抗体结合对纳米颗粒进行功能化,可导致纳米颗粒被脑毛细血管和毛细血管后小静脉的内皮细胞吸收。降低与脂质体结合的靶向转铁蛋白受体抗体的密度会限制 BEC 的吸收。阻止与高亲和力抗转铁蛋白受体抗体结合的纳米粒子的运输、降低靶向抗体的亲和力或使用单价抗体可增加 BEC 的吸收,并允许进一步穿过 BBB。靶向脂质体在毛细血管后小静脉中从血液到大脑的运输的新证明很有趣,显然值得进一步研究机制。最近有证据表明靶向纳米粒子穿过 BBB,这为未来将生物制剂输送到大脑带来了巨大的希望。
(◀图 4) B. 与 pHrodo 染料结合的双环和转铁蛋白与细胞一起孵育 18 小时,并在 Incucyte 上进行分析。C. 和 D. 将 HT1080 细胞接种过夜。将细胞在无血清培养基中孵育 60 分钟,温度为 37 °C。对于 D. 细胞在 37 °C 下用载体 (0.1% DMSO) 或 Dyngo 4a (30 µM) 预处理 30 分钟。然后将细胞与结合的双环 (1.0 µM;红色) 在 4 °C 下孵育 1 小时。然后将细胞转移到 37 °C 下 1.5 分钟以进行内吞。洗涤后,在 -20 °C 下用 80% 丙酮固定和透化细胞 10 分钟。然后将细胞在 10% 山羊血清中封闭 1 小时,并用一抗 (指示) 标记。然后用二抗(绿色)和 Hoechst(蓝色)清洗细胞并标记。三重培养孔的代表性图像。放大 40 倍。(▲ 图 5)A. 和 B. 新鲜分离的人类近端曲小管细胞接种在 transwell 插入物中,Bicycles 测试浓度为 10μM。通过质谱法测量极化细胞的跨上皮吸收和分泌通量。结果标准化为基线 FITC 标记的转铁蛋白摄取(AB 和 BA)。测量单层完整性(80-120 Ω.cm 2 跨上皮电阻)作为质量控制。
与经典的血脑屏障通道相比,抽象的鼻子到脑递送提出了一种有希望的替代途径,尤其是用于递送高分子量的药物。通常,大分子在生理环境中迅速降解。因此,可以使用纳米标志系统来保护生物分子免受过度降解。此外,由于特定的结合和较长的停留时间,靶向纳米颗粒表面上的配体能够改善生物利用度。在这项工作中,转铁蛋白装饰的壳聚糖纳米颗粒用于评估模型蛋白在体外通过鼻上皮屏障的通过。已证明,促进的叠氮化叠氮化物 - 烷基环加成反应可用于将功能组连接到转铁蛋白和壳聚糖,在壳聚糖纳米颗粒制备后,在轻度反应条件下,在轻度反应条件下可以快速共价表面缀合。通过SDS-PAGE和SPR测量确认了转铁蛋白及其结合效率的完整性。产生的转铁蛋白装饰纳米颗粒的大小约为110-150 nm,表面电势为正。纳米颗粒的表面结合配体的最高量也显示出最高的细胞摄取到人鼻上皮细胞系中(RPMI 2650)。在与胶质母细胞瘤细胞(U87)的空气 - 液体界面共培养模型中,转铁蛋白充分的纳米颗粒显示出更快的通过上皮细胞层的通过,并增加了细胞对胶质母细胞瘤细胞的摄取。这些发现证明了特定靶向配体的有益特征。使用这种化学和技术配方概念,在纳米颗粒形成后,可以将多种靶向配体连接到表面,同时保持货物完整性。
如果新南威尔士州健康公司发出“待在家里”订单,这使您无法参加HMRI进行预定的试用访问,我们想在家中拜访您。家庭访问仅包括血液收集,所有问卷将通过电话完成。,如果您不舒服地这样做,您就不同意参加家庭访问。如果您同意参加家庭访问,研究团队的成员将通过电话与您联系,以安排方便您的时间,并询问有关您的住所以及与谁住的问题,以完成风险评估。将根据严格的安全协议进行家庭访问,以确保您不会面临任何额外的风险。
摘要:蛋白质纳米笼因其独特的结构、卓越的生物相容性和高度定制能力而得到了广泛的研究。特别是,铁蛋白纳米笼 (FN) 已被用于运送各种各样的分子,从化疗药物到成像剂等等。FN 的主要优点之一是它们对转铁蛋白受体 1 的内在靶向效率,该受体在许多肿瘤中过度表达。此外,可以通过基因操作引入新的变体,以提高这种多功能药物输送系统的负载能力、靶向能力和生物利用度。在这篇综述中,我们讨论了 FN 的主要特征以及这种有前途的纳米技术在肿瘤学领域的最新应用,特别强调了实体肿瘤的成像和治疗。