大小的铸造厂。如果您的铸造厂是现有的来源,请确定2008日历年的金属熔体生产。如果产量等于或小于20,000吨,则您的铸造厂被认为很小。如果生产超过20,000吨,则认为它很大。如果您的铸造厂是一个新来源,并且年度熔体容量等于或小于10,000吨,则您的铸造厂被认为很小。如果超过10,000吨,则您的铸造厂被认为很大。年度金属熔体产量是指在给定日历年内,在铸造厂的所有金属熔炉中充电的金属总量。年度金属熔体容量取决于炉子是否允许空气质量部门允许使用炉子。如果不是,则可以通过假设炉子以每年8,760小时的方式运行来确定容量。如果允许它们,则容量由每年计算的最大允许生产率确定。如果许可证限制了炉的工作时间,则使用允许的小时将最大允许的金属生产速率用于年度。
摘要该网络研讨会回顾了50年以上Cast MMC的进度。介绍了MMC组件在汽车,铁路,空间,计算机硬件和娱乐设备中的当前使用。列出了MMC行业的信息,包括MMC行业的主要生产商Cast MMC的总量。讨论的一些铸造MMC包括铝石墨,铝碳化铝,铝 - 铝铝和铝式灰烬。在包括铸造厂的制造,生产纳米复合材料,功能梯度材料,句法泡沫,自我修复和自润滑复合材料在内的铸造MMC的当前和未来方向。讨论了在Al-Graphite和Al-Graphite-Sic复合材料中用于压缩机,活塞和旋转发动机的轻质自润滑缸衬里的最新进展。提出了金属基质复合材料的未来前景,包括与这些材料的固化处理有关的基本问题。关键字:复合材料;金属铸造;陶瓷;纳米颗粒。参考
铸造和锻造组件位于国防部(国防部)关键武器平台的核心,为美国的战士准备提供了至关重要的贡献。自2000年以来,美国铸造厂数量减少了67%,美国的铸件和本金(CF)生态系统供应链正在逐渐减少。考虑到离岸和持续的经济逆风,其余的高质量的国内铸造者和遗产往往会优先考虑高量订单和客户。遗留平台的性质特别加剧了这个问题,旧平台的性质在很大程度上构思,定义和存储在纸上。与劳动力可用性的普遍挑战同时,国防部获得低量和锻造组件面临的挑战在地缘政治动荡中构成了关键而持久的问题。
问题:铸造 MMC 材料的历史挑战是 SiC 含量被限制在 30% 的体积百分比。超过此水平,铸造是不可能的,因为 MMC 浆料变得太粘稠,性能不如陶瓷基复合材料、锻铝和钢等竞争材料。解决方案:M Cubed Technologies 成功开发了一种新方法,通过重力浇注工艺制造出负载率为 55% 的铝-碳化硅复合材料铸件,并利用可在大多数铸造操作中实施的传统成型方法。创建的演示组件是用于 F-15 等航空电子系统的热管理板。
▪ 在设计凯迪拉克 Celestiq 的底盘框架时,通用汽车采用了所谓的“超精密砂型铸造”技术,通用汽车官员表示,该技术在小批量应用中具有成本和设计灵活性优势。▪ 通用汽车的整个下部结构结合了六个相当大的铸件,包括连接到两个 8 英尺长(2.5 米)铸件的前后结构,这些铸件通过粘合剂粘合并点焊到单个底盘上。▪ CELESTIQ 底盘包括六个大型精密砂型铸造铝部件。▪ 与典型的冲压结构相比,每个铸件可减少 30 到 40 个部件。▪ 其优点是更有效地利用空间、简化结构并提高结构刚度。▪ CELESTIQ 精密砂型铸造材料和工艺非常适合小批量、手工定制的车辆。
▪ 在设计凯迪拉克 Celestiq 的底盘框架时,通用汽车采用了所谓的“超精密砂型铸造”技术,通用汽车官员表示,该技术在小批量应用中具有成本和设计灵活性优势。▪ 通用汽车的整个下部结构结合了六个相当大的铸件,包括连接到两个 8 英尺长(2.5 米)铸件的前后结构,这些铸件通过粘合剂粘合并点焊到单个底盘上。▪ CELESTIQ 底盘包括六个大型精密砂型铸造铝部件。▪ 与典型的冲压结构相比,每个铸件可减少 30 到 40 个部件。▪ 其优点是更有效地利用空间、简化结构并提高结构刚度。▪ CELESTIQ 精密砂型铸造材料和工艺非常适合小批量、手工定制的车辆。
摘要这项研究工作的目的是制定磷酸西他汀磷酸盐的快速口服膜来治疗糖尿病。使用膜形成聚合物HPMC E 15和HPMC E 50 CPS和PEG和PEG和丙烯类乙二醇作为增塑剂,使用溶剂磷酸盐的快速溶解膜是制备的。评估了所有制备的薄膜的重量变化,厚度,折叠耐力,伸长率,拉伸强度,药物含量,在 - 维特罗崩解时间,体外溶解测试,SEM分析和稳定性研究中。所有结果都令人满意。在所有配方中,F3分别在3分钟内分别释放了20秒和99%的药物。基于上述结果,可以得出结论,磷酸西他汀的快速溶解口服膜可能会产生快速作用,从而通过避免第一个通过效应1来增强吸收1。
摘要:大量能源消耗和化石燃料的用光导致了可再生能源的发展,包括太阳能,风能和潮汐。其中,太阳能电池已经通过硅太阳能电池板的显着成就得到了很好的开发,这些太阳能电池板通常用作窗户,屋顶,公共灯等。为了推动太阳能电池的应用,高度必需的灵活类型,例如分层铸造的太阳能电池(LCSC)。有机太阳能电池(OSC),钙钛矿太阳能电池(PSC)或对染料敏感的太阳能电池(DSSC)是有希望的LCSC,用于扩大太阳能在许多类型的表面上的应用。LCSC将具有成本效益,可以使大规模生产具有高度效果和稳定。LCSC的每一层对于构建太阳能电池的完整结构都很重要。在细胞结构(活动材料,电荷载体传输层,电极)中,孔传输层(HTL)在将孔传输到阳极中起重要作用。最近,来自无机,有机和有机金属材料的不同HTL已经出现,对OSC,PSC或DSSC设备的稳定性,寿命和性能产生了很大的影响。本综述总结了太阳能电池的无机,有机和有机金属HTL的最新进展。的观点和HTL发展和改进的挑战也得到了强调。
Alan Luo 是俄亥俄州立大学哥伦布分校材料科学与工程和集成系统工程(制造业)教授。Luo 教授领导着俄亥俄州立大学轻量化材料与制造研究实验室(LMMRL)并且是俄亥俄州立大学仿真创新与建模中心(SIMCenter)的指导委员会成员。Luo 教授是美国国际金属学会(ASM)和国际汽车工程师学会(SAE)的当选院士。在 2013 年 7 月加入俄亥俄州立大学之前,Luo 博士是通用汽车全球研发中心(美国密歇根州沃伦)的通用汽车技术研究员,拥有 20 年的行业经验。Luo 教授是国际公认的轻量化材料和加工领域的领导者,并且是两个国家制造业创新网络 (NNMI) 研究所的技术领导者:LIFT(面向未来轻量化创新)两个工艺支柱(熔体加工和热机械加工)的联合负责人;以及 REMADE(减少能耗与减少排放)研究所制造材料优化副节点负责人。