用于太空应用的纯锡元件的使用 有几项指令和政府法规旨在减少铅等有害物质的使用。为了减少铅的使用,许多供应商已在其产品中采用纯锡镀层替代。使用纯锡镀层可能会导致几个问题,包括锡晶须生长,当这种材料用于太空应用时,可能会出现问题。Microsemi SoC Corp. 的政策是,不会在已发货或未来发货的任何密封设备上使用或打算使用纯锡镀层。Microsemi SoC 尚未交付使用纯锡镀层或焊料的密封封装,将来也不会交付使用纯锡镀层的密封设备。Microsemi SoC 的含锡金属密封产品的纯度不得超过 97%。如果您对太空应用中锡晶须生长的风险有任何疑问,请参阅以下网站,或联系 Microsemi SoC 技术支持寻求帮助。 http://nepp.nasa.gov/whisker/reference/reference.html 企业运营质量
强烈建议为无线电和 vario 系统使用单独的电源电路。这样做的原因是 varios 消耗 100-200mA 电流,而 TRANSMIT 上的典型无线电消耗 2 AMPS 电流。如果无线电和 varios 共享相同的电源总线,则电路中的任何电阻都会乘以无线电发射时的 2 AMP 电流消耗,而不是 vario 电路的 200mA,从而导致更大的电压降。这会导致您的 vario 在无线电传输期间无法正常工作,特别是在电池电量低的情况下。当然,为获得最佳无线电性能,最好将电源线中的电阻降至最低。不必要电阻的来源包括开关接触不良、保险丝不良、保险丝座不良、电池连接器不良、线规太小以及焊接不良。我们建议使用 18 号或更大的航空电线、电子工业类型的开关(不是汽车开关,因为这些开关有时具有未镀层的黄铜触点,会氧化)和 CANNON 类型的电池锁存连接器。 (4 针 - 针 1 正极,针 4 接地。3 针 - 针 1 正极,针 3 接地。)
AMS2700 1 耐腐蚀钢的钝化 ASTM B912 1 通过电解抛光对不锈钢合金进行钝化 电镀 AMS2460 1 镀铬 AMS-QQ-C-320 1 镀铬(电沉积) AMS2403 1 镀镍(通用) AMS-QQ-N-290 1 镀镍(电沉积) AMS2418 1 镀铜 ASTM B545 1 锡电沉积涂层标准规范 MIL-T-10727 1 锡镀层:电沉积或热浸,用于黑色金属和有色金属 MIL-G-45204 1 镀金,电沉积 ASTM B700 1 银电沉积涂层标准规范 AMS-QQ-S-365 1 银镀层,电镀,一般要求 ASTM B633 1 钢铁上锌电镀层的标准规范 AMS-QQ-Z-325 1 锌涂层,电镀层 ASTM F1941 1 机械紧固件上电镀层的标准规范 AMS2417 1 镀层,锌镍合金 AMS2461 1 镀层,锌镍合金(12 至 16% Ni) AMS-QQ-P-416 1 镀层,镉(电镀) AC7108/10 化学镀 AMS2404 1 镀层,化学镀镍漆 MIL-DTL-18264 1 表面处理,有机,武器系统,应用和控制 MIL-PRF-22750 1 涂层:环氧树脂,高固体MIL-PRF-23377 1 底漆涂层:环氧树脂,高固体 MIL-PRF-85285 1 面漆,飞机和支持设备 UBC90992 2 整流罩,底漆和面漆应用 UBC90990 2 聚氨酯雨蚀涂层干膜润滑剂的应用 MIL-PRF-46010 1 润滑剂,固体薄膜,热固化,防腐 (S-1738) AC7108/7 IVD 铝 MIL-DTL-83488 1 涂层,铝,高纯度(离子气相沉积 (IVD)) 热处理 AMS2770 1 锻造铝合金零件的热处理 AMS2771 1 铝合金铸件的热处理 AMS2759 1 热处理沉淀硬化耐腐蚀、马氏体时效和二次淬火钢件 AMS2769 1 真空下零件热处理 AMS2801 1 钛合金零件热处理 AMS-H-81200 1 钛及钛合金热处理 HIP GPS70001 2 材料要求,Ti-6Al-4V ELI LPBF GPS70003 2 材料要求,铝 F357 LPBF AMS4992 2 铸造,结构熔模,钛合金 6Al-4V 热等静压 AC7102/1 钎焊 AWS C3.7 2 铝钎焊规范 AC7102/3 表面处理 AMS-S-6090 2 渗碳级钢件的渗碳和热处理 核心处理 UBC90983 2* Fab,核心处理 UBC90982 2* Fab,Cycom 5320,夹层复合材料制造UBC90978 2* 湿式覆铜板,Cond,Perm UBC90980 2* Fab,Cycom 5320,层压板 UBC90982 2* Fab,Cycom 5320,夹层 UBC90985 2* 制造,SQRTM,5320-1 UBC90986 2* Tencate EX1522/4581 蜂窝状天线罩结构 UBC90988 2* 囊式制造,Cycom 5320
美国质量协会 (ASQ) ASQ-Z1.4 — 按属性检验的程序、抽样和表格(国防部采用)。(可从 www.asq.org 获取此文件的副本。)ASTM INTERNATIONAL ASTM A1008/ - 钢材、板材、冷轧、ASTM A1008M 碳、结构、高强度低合金、具有改进的成形性要求硬度、溶液硬化和可烘烤硬化的高强度低合金的标准规范(DoD 采用) ASTM B152/B152M - 铜板、带、板和轧制棒的标准规范(DoD 采用) ASTM B633 - 钢铁上锌电镀层的标准规范(DoD 采用) ASTM D471 - 橡胶性能的标准测试方法 - 液体的影响(DoD 采用) ASTM F15 - 铁-镍-钴密封合金的标准规范 ASTM F1249 - 水蒸气透过率的标准测试方法使用调制红外传感器通过塑料薄膜和薄片(这些文件的副本可从 www.astm.org 获得。)静电放电协会 (ESD) ANSI/ESD STM 11.11 - 平面材料的表面电阻测量 - 保护静电放电敏感物品的标准测试方法 ANSI/ESD STM 11.31 - 评估静电放电屏蔽材料的性能 - 袋子,标准测试方法(这些文件的副本可从 www.esda.org 获得。)
与汽油汽车 (GC) 相比,电动汽车更加环保、节能且经济。然而,当前电动汽车的一个突出缺点是电池从空电状态到充满电需要很长的等待时间,而给 GC 充满电只需几分钟。在此背景下,美国能源部提出了“极限快速充电” (XFC) [2],具体要求充电时间为 15 分钟(4C 速率),以确保电动汽车的大规模普及。到目前为止,使用石墨负极和碳酸亚乙酯 (EC) 基电解质的商用 LIBs 不可能在没有锂镀层的情况下实现 XFC,因为与 Li/Li + 相比,石墨的工作电位在高倍率下很容易降至 0 V。[3] 人们进行了无数的尝试致力于石墨的结构改性以提高倍率性能,例如降低曲折度 [4] 和增加孔隙率。 [5] 然而,由于电池能量密度不可避免地会降低,这些以高功率换取低能量密度的尝试并不适合实际应用。另一方面,加速本体电解质中的 Li + 传输过程似乎是实现高动力学的有效方法 [6],而不会牺牲能量密度。低粘度的脂肪族酯 [7] 被用作
阀门设计和材料方面的最新进展已使渣油加氢裂化反应器 (RHR) 的运行得到显著改善。这些创新解决了热冲击、腐蚀和这些关键工艺中精确控制的需求等关键问题。例如,采用先进材料和制造技术(如陶瓷涂层和 3D 打印)的隔热套管已成为保护阀门免受快速温度波动影响的有效解决方案。这些设计最大限度地减少了通过传导、对流和辐射的热传递,大大延长了阀门的使用寿命并减少了维护要求。垫片技术也已发展以满足 RHR 环境的需求。高性能垫片(包括采用贵金属镀层的垫片)具有增强的耐腐蚀性、热稳定性和耐用性。这些进步确保了更好的密封性能并降低了泄漏风险,这对于加氢裂化操作的安全性和效率都至关重要。此外,可编程逻辑控制器 (PLC) 和高级控制面板等自动化系统的集成彻底改变了 RHR 中的阀门管理。这些系统可实现精确控制、高效清洗、最佳加热循环和增强的安全协议。强大的硬件和先进的软件相结合,可以实现实时监控和调整,最大限度地减少人为错误并最大限度地提高流程效率。
摘要:锂离子电池(LIB)具有高能量/功率密度,低自我放电速率和较长循环寿命的优势,因此被广泛用于电动汽车(EVS)。但是,在低温下,Libs的峰值功率和可用能量急剧下降,充电期间锂镀层的风险很高。这种不良的性能显着影响电动汽车在寒冷天气中的应用,并极大地限制了高纬度地区的电动汽车的促进。最近这项挑战引起了很多关注,尤其是调查低温下LIB的性能下降并探索解决方案。但是,在此主题上存在有限的评论。在这里,我们彻底回顾了有关电池性能降低,建模和预热的最新技术,旨在推动有效的解决方案来解决LIBS的低温挑战。我们概述了在低温下LIB的性能限制,并量化了在低温下LIB的(DIS)充电性能和电阻的显着变化。考虑到低温影响因素的各种模型也被制表和总结,并改进了描述低温性能的建模。此外,我们对现有的加热方法进行了分类,并强调诸如供暖率,能耗和终生影响等指标,以提供对加热方法的基本见解。最后,概述了当前关于低温LIB的研究的局限性,并提供了未来研究方向的前景。
在恒电位模式下,微米厚度的涂层在储存过程中会被破坏。这种类型的晶体水合物电解质不能被认为是通常意义上的水性电解质。其中电解合金的形成机理研究较少,应该与金属从水性复合溶液中电还原并同时析氢有着根本的不同。为了获得厚度为 1-10 毫米的涂层,水性电解质是最有希望的。使用各种复合成分的溶液 7-9 可以形成铼含量范围很广的合金,这意味着可以通过电镀获得各种各样的表面功能特性。如参考文献 2 和 10 所示,通过从 pH 为 3.5 的柠檬酸盐 (Cit) 电解质中电沉积可以获得铼含量为 45-65 at% 的高质量涂层。众所周知,电镀层的组成和性能取决于电化学活性复合物的组成,即直接在电极表面反应的离子的组成,这些离子在阴极的放电导致金属或合金的形成。电化学活性复合物的数量、浓度和组成又取决于溶液的pH值。在柠檬酸盐溶液中,考虑到在柠檬酸分子中取代四个质子的理论可能性,在低pH值下,可能同时存在几种质子化的柠檬酸钴11以及铼的柠檬酸复合物12。在pH值为3.5时,柠檬酸钴中的最高浓度为