自1970年代的构想以来,海上风能的利用在涡轮设计,材料和制造技术方面的进步驱动下,其构想的利用已经显着增长,从而使更大,更强大的涡轮机的发展,从而增加了越野风场风场的尺寸和容量。然而,离岸风电场面临的挑战是风力涡轮机之间的空气动力相互作用,其中从风中提取能量会导致风速降低和湍流增加,从而影响相邻的涡轮机的效率和生产力,从而导致实质性能量损失。为了应对这些挑战,已经开发了数值模型来量化和预测涡轮的相互作用效果,这些因素考虑了大气湍流,风速,风向和唤醒恢复等因素。但是,在风电场设计中使用的传统单曲模型过分简化了物理学,忽略了关键的身体影响,从而限制了它们对更大且更复杂的风电场的适用性。最近的研究强调了对高保真建模方法的需求,例如计算流体动力学(CFD)模拟以及中尺度大气建模(WRF),这些模拟(WRF)提供了更现实的涡轮相互作用效应的表示。这些高保真模型考虑了涡轮机与大气之间的耦合相互作用,并且验证研究表明它们在繁殖在操作风电场中观察到的功率生产模式方面的准确性。通过结合大气稳定性和远距离唤醒传播,这些模型提供了改进的预测,尤其是对于更大且更复杂的风电场配置。随着海上风能行业继续扩展,涵盖了前所未有的规模的项目,因此采用更高的涡轮互动模型至关重要,以确保对能源生产的准确评估并减轻与大型项目相关的风险。采用这些先进的建模方法,使海上风能行业可以优化风电场布局,最大化能源生产,并推动过渡到更可持续和更绿色的能源未来。
研究了有限尺寸开放费米-哈伯德链中的长距离纠缠以及端到端量子隐形传态。我们展示了费米-哈伯德模型基态支持最大长距离纠缠的特性,这使其可以作为高保真度长距离量子隐形传态的量子资源。我们确定了创建可扩展长距离纠缠的物理特性和条件,并分析了其在库仑相互作用和跳跃幅度影响下的稳定性。此外,我们表明协议中测量基的选择会极大地影响量子隐形传态的保真度,我们认为通过选择反映量子信道显著特性的适当基,即哈伯德投影测量,可以实现完美的信息传输。
我们引入了一个健壮的方案,用于长距离连续变量(CV)测量设备独立的(MDI)量子密钥分布,在该分布中,我们在通过不受信任的继电器介质进行通信的遥远各方之间采用了选择后。我们执行了一个安全分析,该分析允许每个链接的一般透射率和热噪声方差,我们假设窃听器会执行集体攻击并控制通道中的过量热噪声。引入选择后,当事方能够在超过现有CV MDI协议的距离上维持秘密关键率。在中继位置位置的最坏情况下,我们发现当事方可以在标准光学纤维中牢固地沟通14公里。我们的协议有助于克服先前提出的CV MDI协议的率距离限制,同时保持其许多优势。
超导谐振器耦合器很可能成为模块化半导体量子点 (QD) 自旋量子比特处理器中必不可少的组件,因为它们有助于随着量子比特数量的增加而缓解串扰和布线问题。在这里,我们专注于由两个模块组成的三量子比特系统:耦合到单电子双 QD 的双电子三重 QD 谐振器。通过结合分析技术和数值结果,我们推导出描述三量子比特逻辑子空间的有效哈密顿量,并表明它准确地捕捉了系统的动态。我们研究了短程和长程纠缠门的性能,揭示了旁观者量子比特在两种情况下降低门保真度的影响。我们进一步研究了短程操作中非绝热误差和旁观者相关误差之间的竞争,并量化了它们在短门和长门时间的实际参数范围内的相对重要性。我们还分析了电荷噪声以及与观察者量子比特的残余耦合对模块间纠缠门的影响,发现对于当前的实验设置,泄漏误差是这些操作中不完整性的主要来源。我们的研究结果有助于为半导体芯片上的量子信息处理确定最佳模块化 QD 架构铺平道路。
摘要 空间注意的变化与α波段(α,8-14 Hz)活动的变化有关,特别是在半球间不平衡中。其潜在机制归因于局部α-同步,它调节神经兴奋的局部抑制,以及反映长距离通信的额顶叶同步。这种神经相关性的方向特异性使其具有作为脑机接口 (BCI) 控制信号的潜力。在本研究中,我们探索了长距离α-同步是否呈现依赖于自愿注意定向的侧化模式,以及这些神经模式是否可以在单次试验水平上被拾取以提供主动 BCI 的控制信号。我们在执行隐蔽视觉空间注意 (CVSA) 任务时从一群健康成人(n = 10)收集了脑电图 (EEG) 数据。数据显示,在目标呈现之后,额叶和顶枕区域之间呈现α-波段相位耦合的侧化模式,这与之前的发现一致。然而,这种模式在线索到目标定向间隔内并不明显,而这是 BCI 的理想时间窗口。此外,使用支持向量机 (SVM) 从线索锁定同步中逐次解码注意力方向是偶然的。目前的发现表明,EEG 可能无法在单次试验的基础上检测注意力定向中的长距离 a 同步,因此,凸显了该指标作为 BCI 控制的可靠信号的局限性。
摘要欧洲面临蓝胞菌病毒(BTV)血清型的定期介绍和重新引入,最近通过在野土中的血清型3的入侵而举例说明。尽管将疾病载体的长距离风散布,Culicoides spp。被认为是病毒介绍途径,但在风险评估中仍然被研究了。开发了一个定量风险评估框架,以估计BTV-3从撒丁岛侵入欧洲大陆的风险,该病毒自2018年以来一直存在。我们使用了大气传输模型(杂交单颗粒拉格朗日综合轨迹)来推断昆虫载体的空气传播分散的可能性。流行病学疾病参数量化了撒丁岛载体种群中病毒的流行及其在新区域引入后的第一次传播。假设最大持续时间为24小时,撒丁岛引入BTV的风险仅限于地中海盆地,主要影响意大利半岛,西西里,马耳他和科西嘉岛的西南地区。风险延伸到意大利的北部和中部地区,巴利阿里群岛以及法国大陆和西班牙,主要是最大持续时间长于24小时。关于矢量流条件和杂物复合物特异性参数的其他知识可以改善模型的鲁棒性。我们的框架为BTV介绍风险提供了空间和时间见解,是指导全球监视和准备对Epizootics的准备的关键工具。
摘要欧洲面临蓝胞菌病毒(BTV)血清型的定期介绍和重新引入,最近通过在野土中的血清型3的入侵而举例说明。尽管将疾病载体的长距离风散布,Culicoides spp。被认为是病毒介绍途径,但在风险评估中仍然被研究了。开发了一个定量风险评估框架,以估计BTV-3从撒丁岛侵入欧洲大陆的风险,该病毒自2018年以来一直存在。我们使用了大气传输模型(杂交单颗粒拉格朗日综合轨迹)来推断昆虫载体的空气传播分散的可能性。流行病学疾病参数量化了撒丁岛载体种群中病毒的流行及其在新区域引入后的第一次传播。假设最大持续时间为24小时,撒丁岛引入BTV的风险仅限于地中海盆地,主要影响意大利半岛,西西里,马耳他和科西嘉岛的西南地区。风险延伸到意大利的北部和中部地区,巴利阿里群岛以及法国大陆和西班牙,主要是最大持续时间长于24小时。关于矢量流条件和杂物复合物特异性参数的其他知识可以改善模型的鲁棒性。我们的框架为BTV介绍风险提供了空间和时间见解,是指导全球监视和准备对Epizootics的准备的关键工具。
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2022 年 5 月 28 日发布。;https://doi.org/10.1101/2022.05.25.493035 doi:bioRxiv 预印本
She11man-B1uff-to-Ocean-Tower 无线电链路的平面图。链路分集配置。链路接收信号电平记录设置。按时间划分的传播状态,1989 年 3 月。按时间划分的传播状态,1989 年 4 月。按时间划分的传播状态,1989 年 5 月。按时间划分的传播状态,1989 年 7 月 静态传播条件的示例,状态 1。从传播状态 1 过渡到状态 2 的示例。状态 3,底部天线显示最高信号。状态 4,中间天线显示最高信号。状态 5,所有天线。显示严重下降的水平。多径衰减分布计算的路径轮廓。多径衰减分布。链路预检测载波噪声比分布。测量的折射率梯度分布。计算的双模 1。折射率梯度分布。对应于 0.5 概率的射线路径