摘要:与神经发育障碍 (NDD) 和特征相关的 DNA 序列变异(单核苷酸多态性或变异,SNP/SNV;拷贝数变异,CNV)通常映射到假定的转录调控元件上,特别是增强子。然而,这些增强子控制的基因仍然定义不清。传统上,给定增强子的活性及其与序列变异相关的可能改变的影响被认为会影响最近的基因启动子。然而,在神经细胞染色质中获得全基因组长距离相互作用图挑战了这种观点,表明给定的增强子通常不与最近的启动子相连,而是与更远的启动子相连,跳过中间的基因。在本篇观点中,我们回顾了一些最近的论文,这些论文生成了长距离相互作用图谱(通过 HiC、RNApolII ChIA-PET、Capture-HiC 或 PLACseq),并将已识别的长距离相互作用 DNA 片段与与 NDD(如精神分裂症、躁郁症和自闭症)和特征(智力)相关的 DNA 序列变体重叠。这种策略允许将承载 NDD 相关序列变体的增强子的功能归因于位于线性染色体图谱远处的连接基因启动子。其中一些增强子连接基因确实已被鉴定为导致疾病,通过鉴定基因蛋白质编码区(外显子)内的突变,验证了该方法。然而,重要的是,连接基因还包括许多以前未在其外显子中发现突变的基因,指向 NDD 和特征的新候选贡献者。因此,长距离相互作用图谱与检测到的与 NDD 相关的 DNA 变异相结合,可用作识别新的候选疾病相关基因的“指针”。基于 CRISPR-Cas9 的方法对涉及增强子和启动子的长距离相互作用网络进行功能操控,开始探索已识别相互作用的功能意义以及所涉及的增强子和基因,从而提高我们对神经发育及其病理学的理解。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。此版本的版权持有者于 2022 年 12 月 19 日发布。;https://doi.org/10.1101/2022.05.25.493035 doi:bioRxiv 预印本
引言如今,点对点量子密钥分发 (QKD) 已经成为商业现实。商用 QKD 系统的范围通常在光纤上为 100 公里。学术系统和新协议可以达到数百公里 1、2。中国墨子号卫星已经展示了与低地球轨道卫星的自由空间 QKD 链路 3。然而,单个点对点链路的范围仍然受到链路功率损耗的限制 4。为了扩展 QKD 的实际应用,有必要将范围扩展到全球 QKD 并提供更复杂的网络拓扑 5。随着量子中继器等新技术的出现,这种扩展的多功能性可以通过所谓的可信节点 (TN) 6 实现。在 TN 中,量子信号被测量并转换为经典信号。生成一个新的经典信号,转换为量子,然后发送到下一个节点。 TN 可用作中继,提供长距离 QKD,也可用作交换机,提供复杂的拓扑 5 。然而,由于 TN 包含经典信号,原则上可以被复制,因此 TN 内不存在量子安全性。必须信任 TN 并对其进行物理保护,以避免数据泄露 5 。因此,出于安全目的,TN 代表了完整的端到端 QKD 传输中的薄弱环节。在本文中,术语“长距离 QKD”是指全球 QKD,即在地球上任意两点之间部署和实施 QKD 的能力。最近,英国知识产权局向 Arqit Ltd. 公司授予了专利号 GB2590064(https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064)我们还将本专利中描述的协议称为 ARQ19 协议。本专利旨在提供没有 TN 的长距离 QKD。根据这些说法,现在可以使用不受信任的卫星实现全球 QKD。这将改变 QKD 的游戏规则。因此,调查这些说法显然很重要。不幸的是,据我们所知,它们尚未在任何科学期刊上通过随附的公开披露得到验证。因此,我们的分析基于已发布的 ARQ19 专利和 Arqit 在美国证券交易委员会 (SEC) 提交的 20-F 年度报告 (https://www.sec.gov/Archives/edgar/data/0001859690/000110465921150276/arqq-20210930x20f.htm)。本报告将
摘要:全基因组关联研究已充分证实了复杂人类疾病中的非编码变异,并认为它涉及调节元件,例如增强子,其变异会影响致病基因的表达。调节元件通常远离它们所调节的基因,或位于与所调节基因不同的基因的内含子内,因此很难识别出受特定增强子变异影响的基因。增强子通过长距离物理相互作用(环路)与其靶基因启动子相连。在我们的研究中,我们将通过长距离相互作用与启动子相连的 10,000 多个增强子重新映射到人类基因组上,我们之前已通过 RNApolII-ChIA-PET 分析在小鼠脑源性神经干细胞中识别出这些增强子,并结合 ChIP-seq 映射携带表观遗传增强子标记的 DNA/染色质区域。这些相互作用被认为与功能相关。我们在人类基因组中发现,数千个 DNA 区域与相互作用的小鼠 DNA 区域(增强子和连接启动子)同源。我们进一步注释了这些人类区域与序列变体(单核苷酸多态性,SNP;拷贝数变体,CNV)的重叠,这些变体之前与人类神经发育疾病有关。我们记录了各种与人类神经发育疾病相关的遗传变异影响参与长距离相互作用的增强子的案例:之前由全基因组关联研究确定与精神分裂症、躁郁症和智力相关的 SNP 位于我们的人类同源增强子内,并改变转录因子识别位点。同样,与自闭症谱系疾病和其他神经发育障碍相关的 CNV 与我们的人类同源增强子重叠。其中一些增强子(在小鼠中)与已经与人类疾病相关的基因的同源物相连,从而强化了该基因确实与疾病有关的假设。其他增强子与此前与该疾病无关的基因有关,表明它们可能参与致病过程。我们的观察结果为进一步探索神经疾病提供了资源,同时现在已广泛开展了全基因组范围的神经疾病患者 DNA 变异识别。
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2022 年 5 月 28 日发布。;https://doi.org/10.1101/2022.05.25.493035 doi:bioRxiv 预印本
由于纠错会产生大量开销,大规模量子计算将需要大量量子比特。我们提出了一种基于量子低密度奇偶校验 (LDPC) 码的低开销容错量子计算方案,其中长距离相互作用使得许多逻辑量子比特能够用少量物理量子比特进行编码。在我们的方法中,逻辑门通过逻辑 Pauli 测量进行操作,既能保护 LDPC 码,又能降低所需额外量子比特数的开销。与具有相同代码距离的表面码相比,我们估计使用此方法处理大约 100 个逻辑量子比特的开销将有数量级的改善。鉴于 LDPC 码所展示的高阈值,我们的估计表明,这种规模的容错量子计算可能只需几千个物理量子比特就能实现,错误率与当前方法所需的错误率相当。
构成了一代的物理机制,传播的特征和可能使用未阻尼的温度波的使用。这些波的产生过程与局部松弛热力转移过程的可逆性有关。在实验过程中,结果表明,这种波只能在某些频率下存在,而在放松时间上延长。已经研究了使用这些波在很长远处使用这些波的能量传递的可能性。可以证明,使用这些波X射线产生是可能的,并且在较厚的金属屏幕后面的TID目标中有效刺激了远离波源的核融合。也被认为是实现与这些温度波作用下相互作用颗粒相一相关状态相关的LENR反应的可能物理机制。
摘要 本文比较了电力、气态和液态载体(电燃料)进行长距离、大规模能源传输的相对成本。结果表明,每兆瓦时的电力传输成本可能比氢气管道高出八倍,比天然气管道高出约十一倍,比液体燃料管道高出二十至五十倍。这些差异通常也适用于较短距离。电力传输成本较高主要是因为与气态和液态燃料管道的能量传输能力相比,电力传输线路的承载能力(每条线路兆瓦)较低。传输成本的差异很重要,但往往被忽视,在分析各种可再生能源生产、分配和利用情景时,应将其视为重要的成本组成部分。
朱伟、宋建军教授、韩琳、白华、王倩、尹胜、黄林博士、陈天、潘锋教授 清华大学材料科学与工程学院先进材料重点实验室、北京未来芯片创新中心,北京 100084,中国。电子邮箱:songcheng@mail.tsinghua.edu.cn,panf@mail.tsinghua.edu.cn 关键词:二维铁磁性、范德华半导体、Cr 2 Ge 2 Te 6 、界面调制、居里温度、垂直磁各向异性
当前,Artemis 计划迫切需要一种多功能、高负载、长距离的操作系统,以便为月球着陆器提供有效载荷的卸载和处理。轻型表面操作系统 (LSMS) 是一种结构高效、长距离的机械臂,可适应多种任务和有效载荷范围。LSMS 在美国宇航局兰利研究中心 (LaRC) 已有十多年的历史和测试,包括多种末端执行器工具和操作场景的实验室和现场测试。由于需要快速开发经过飞行验证的卸载能力,并希望该设备可在未来的任务和服务中重复使用,美国宇航局的空间技术任务理事会今年启动了一项为期 4 年的项目,以开发和建造 LSMS 的原型飞行装置,该装置能够在月球上以 8 米的举升范围举起 1,000 公斤的重物。目标任务是作为技术演示器在大型货运着陆器上飞行,以验证自动调平、部署和有效载荷处理操作,未来的飞行将增加额外的工具和能力。本文总结了过去十年的 LSMS 工作、当前任务驱动因素和目标,并详细介绍了 LSMS 向原型飞行单元发展的第一年。