许多细菌对入侵的噬菌体或质粒具有 II 型免疫力,称为成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关 9 (Cas9) 系统,用于检测和降解外来 DNA 序列。Cas9 蛋白有两个负责双链断裂的核酸内切酶(分别称为 HNH 结构域,用于切割 DNA 双链的靶链,RuvC 结构域用于切割非靶链)和一个单向导 RNA (sgRNA) 结合结构域,其中 RNA 和靶 DNA 链是碱基配对的。三种工程化的单 Lys-to-Ala HNH 突变体(K810A、K848A 和 K855A)表现出对靶 DNA 链切割的增强的底物特异性。我们在本研究中报告,在野生型酶中,在 1mM EDTA 存在下,与催化位点相邻的含 Y836 环(包括 E827-D837)内的 D835、Y836 和 D837 具有无法表征的加宽 1 H 15 N NMR 共振,而环中其余残基具有不同程度的加宽 NMR 光谱。我们发现,野生型酶中的该环在分子动力学 (MD) 模拟期间表现出三种不同的构象,而三个 Lys-to-Ala 突变体
Onyedikachi Chioma Okoro 国立航空大学/持续适航系/乌克兰基辅,03058 电子邮件:okorokachi7@gmail.com Maksym Zaliskyi 国立航空大学/电信和无线电电子系统系/乌克兰基辅,03058 电子邮件:maximus2812@ukr.net Serhii Dmytriiev 国立航空大学/持续适航系/乌克兰基辅,03058 电子邮件:sad@nau.edu.ua Oleksandr Solomentsev 国立航空大学/电信和无线电电子系统系/乌克兰基辅,03058 电子邮件:avsolomentsev@ukr.net Oksana Sribna 国立航空大学飞行学院/飞行安全系/乌克兰克罗皮夫尼茨基,25005电子邮件:oksana-kd@ukr.net 收到日期:2021 年 7 月 26 日;接受日期:2021 年 11 月 12 日;发表日期:2022 年 4 月 8 日 摘要:维护约占飞机运营成本的 20%;高于燃料、机组人员、导航和着陆费用相关的成本。维护成本的很大一部分归因于飞机部件和系统的故障。这些故障是随机的,提供了一个数据库,可以进一步分析该数据库以帮助决策进行维护优化。本文开发了可用于优化飞机系统维护任务间隔的随机数学模型。本研究的初始数据是诊断变量和可靠性参数,它们构成了选择的基础
摘要:本文提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统类型,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换类型,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强的优点。因此本文将FLC引入高型控制系统,利用FLC的输出作为积分器的增益来控制通断,达到动态切换型的目的,并在实验中成功验证。IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。此外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型降阶算法,称为加权梯形Nie-Tan(WTNT)。与传统降阶算法相比,WTNT具有更快的计算速度和更好的稳态精度,并已成功应用于实时控制系统,具有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC和IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度和更强的处理不确定性的能力。
更新了第一剂和第二剂 COVID-19 疫苗之间的时间 美国疾病控制与预防中心 (CDC) 最近更新了其 COVID-19 疫苗接种指南,将对于大多数 12 至 64 岁人群,辉瑞和 Moderna COVID-19 疫苗第一剂和第二剂之间的时间(间隔)延长至八周。 为什么要改变间隔?新数据表明,mRNA COVID-19 疫苗(辉瑞和 Moderna)第一剂和第二剂之间的八周间隔可以改善免疫反应、提高疫苗有效性并延长疫苗对感染和住院的保护时间。它还有助于降低与 mRNA COVID-19 疫苗接种相关的心肌炎(心肌炎症)和心包炎(心脏外层炎症)的微小风险。 这会影响哪些人?本指南影响大多数 12 至 64 岁的人。 CDC 继续建议,辉瑞疫苗第一剂和第二剂之间的疫苗间隔为三周,Moderna 疫苗第一剂和第二剂之间的疫苗间隔为四周:
具有严重肺动脉高压(PAH)的心房间隔缺陷(ASD)的抽象客观治疗策略是有争议的。这项研究旨在评估PAH特异性药物和随后的经导管闭合(即,治疗和修复策略)对临床结果的疗效。方法我们招募了42名患者,他们被转介给13个机构,以考虑与PAH伴随的ASD关闭并接受了治疗和修复策略。终点是由于心力衰竭或恶化的PAH而导致的心血管死亡或住院。在使用PAH特异性药物之前的基线结果,肺血流比(QP:QS),肺血管耐药性(PVR)和平均肺动脉压(PAP)为1.9±0.8、6.9±3.2木单位和45±15 mm Hg。QP:QS增加到2.4±1.2,PVR和平均PAP降低至4.0±1.5木单元和PAH特异性药物后经ASD闭合时35±9 mm Hg。经过反相ASD闭合,没有任何并发症。在经导管ASD闭合后的33个月(1-126个月)的中位随访期间,一名年长的患者死亡,一名患者因心力衰竭而住院,但其他患者在WHO功能类别的改善中幸存下来。PAP进一步降低。结论治疗和修复策略导致较低的并发症和死亡率率降低,而PAP的ASD患者与PAH患者的PAH患者的PAH复杂,而PAH对医疗疗法的反应有利。
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。
。CC-BY 4.0 国际许可 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以显示预印本(未经同行评审认证)预印本 此版本的版权所有者于 2022 年 1 月 30 日发布。;https://doi.org/10.1101/2022.01.28.22269756 doi:medRxiv 预印本
摘要 - 时间间隔ADC广泛用于高速应用中。该结构可以通过并联多重ADC来增加整个转换器的有效采样率。但是,该体系结构将受到不同子转换器之间的不匹配,包括偏移,增益和时机。时机偏斜会产生动态错误,从而提出更大的挑战。本文介绍了通过两种背景盲目校准技术来解决TI ADC中正时不匹配的最新最新解决方案:a)基于确定性均衡和b)基于输入信号的统计信息的方法。
b'Centers具有明确定义的电子环境,以相互定义的方向为了实现合作效应。在基于金属的性质,氧化状态和协调数的各种促成因素中,金属(M M)距离调制已成为识别(Hetero)双金属系统中识别和微调合作效应的一种有希望的方法。[4]尤其是桥接配体设计是决定性的,可以将多个金属中心纳入定义的方向,并通过施用的特点置于中心。[5]选择协调环境,配体效应,例如柔韧性,英尺,电子参数和适当的间隔者,允许系统地变化M M M M M M M M距离是至关重要的因素。[6]可以通过共轭或非 - '
1 BC 疾病控制中心、传染病和免疫服务,加拿大不列颠哥伦比亚省温哥华 2 不列颠哥伦比亚大学,人口与公共卫生学院,加拿大不列颠哥伦比亚省温哥华 3 魁北克大学医院中心 (CHU)-拉瓦尔大学研究中心,加拿大魁北克省魁北克市 4 魁北克国立公共卫生研究所、生物和职业风险,加拿大魁北克省魁北克市 5 BC 疾病控制中心、数据和分析服务,加拿大不列颠哥伦比亚省温哥华 6 拉瓦尔大学,社会和预防医学系,医学院,加拿大魁北克省魁北克市 7 BC 疾病控制中心,公共卫生实验室,加拿大不列颠哥伦比亚省温哥华 8 不列颠哥伦比亚大学,病理学和实验室医学系,加拿大不列颠哥伦比亚省温哥华 9 麦吉尔大学,医学系,麦吉尔大学健康中心传染病科,加拿大魁北克省蒙特利尔10 加拿大不列颠哥伦比亚省维多利亚市卫生部省级卫生官员办公室 11 加拿大魁北克省舍布鲁克市舍布鲁克大学微生物学和传染病系 12 加拿大不列颠哥伦比亚省儿童医院研究所疫苗评估中心