1坎皮纳斯大学(UNICAMP)的电气和计算机工程学院,Campinas 13083-852,巴西; carlos.rufino@carissma.eu(C.A.R.J.); m228835@dac.unicamp.br(M.M.A.)2在生物能源(USP/UNICAMP/UNESP)的机构间研究生课程,Cora Coralina街330号,CIDADE UNIVERSITÁRIA,CAMPINAS 13083-896,巴西3 Carissma Electric,Connectuction of Electric,Connected and Secutect and Secure Ebsibility and Secure Ebsibility(C-Ecos),TechnIsche Hochsche Hochschulany Ingololstadt,85049949999999.850499499999949949999.850949999994999.850499999996号。 daniel.koch@carissma.eu(D.K.); yash.kotak@carissma.eu(y.k。); sergej.diel@thi.de(s.d.); gero.walter@carissma.eu(g.w.); Hans-Georg.schweiger@thi.de(H.-G.S.)4巴勒莫大学(UNIPA)工程系,意大利巴勒莫90128; eleonora.rivasanseverino@community.unipa.it(E.R.S.); pierluigi.gallo@unipa.it(p.g.)5 Consorzio Nazionale Interuniversitario per le Telecomunicazioni(CNIT),43124意大利帕尔马 *通信:hzanin@unicamp.br
抽象的电池能量转换在推进储能和转换技术方面是至关重要的,这是可持续能源系统的主题。这项研究深入研究了电池操作的基础热力学原理,探讨了储能,释放和转换的复杂过程。通过检查电池内的电化学反应,该研究强调了如何有效地存储和转换能量,重点是关键参数,例如熵,焓和吉布斯自由能。对这些热力学特性进行了研究对于优化电池性能,提高能量密度和提高整体效率至关重要。该研究调查了包括锂离子,固态和下一代电池在内的各种电池化学分配,以揭示其热力学行为的复杂性。此外,它解决了影响电池寿命和安全性的热管理和降解机制的挑战。本文强调了热力学在推动电池技术创新方面的重要性,旨在开发更高效,可靠和可持续的储存解决方案,这对于可再生能源和电动移动性的未来至关重要。
初学名单将基于申请最后一周之内的简历和电话/音频访谈。进行最终面试,将通过电子邮件告知候选人进行面试。在个人面试的情况下,不会提供TA/DA。有关更多详细信息,请联系:
。cc-by-nd 4.0国际许可在A未获得Peer Review的认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
图 1 用于改良作物的植物育种的组学技术概述。表型组学代表使用几种高通量表型分析平台对植物表型表达的研究。基因组学识别和表征负责所需性状的基因,代谢组学代表对植物内一整套代谢物的研究,蛋白质组学和转录组学分别解释生物体表达的整套蛋白质,以及基因表达模式和通路分析。泛基因组学代表对整个基因组的系统研究,以便它可以呈现一个物种的整个基因库,包括核心基因和附属基因。离子组学是一门前沿科学学科,它采用高通量平台全面分析植物物种的元素组成。这种方法有助于促进具有改良营养成分的重要农业作物品种的开发。整合来自多种组学方法的数据使研究人员和育种者能够全面了解植物的生物学。这种综合知识可以促进改良作物品种的开发,提高产量、对环境压力的适应能力和营养含量。此外,它还可以实现精准育种策略,从而更有针对性、更有效地实现预期结果。使用 Adobe Photoshop 软件创建。
与气候相关的流离失所是一个越来越关注的话题,以及政治,社会和人道主义领域的关注。许多人寻求制定法律制度,以使生活在受气候受到最大的地区,居住在这些国家,地区,地区和地区的个人和社区的尊严,个人和社区的迁徙通常具有抵抗力的迁移想法作为其最佳适应选择的想法,而是呼吁他们允许他们留在适当的政策。在本文中,我们试图合法地将这些呼吁保留并审查其在实地上的特定形式。我们建议,有一种有权的权利类型学,包括经典主张(主要是针对地方政府或私人参与者,反对犯罪或保护被迫驱逐或搬迁)到更广泛的经济,社会或环境政策的更广泛的主张,以解决潜在的流离失所者,这也可能涉及国民政府和国际社会。我们认为,这些不同类型的主张的全部范围在气候变化环境中具有相关性,并且这种主张可能具有重要的法律,道德和话语能力,以有意义地解决与气候变化相关的流离失所的努力,以符合受影响最受影响的人的权利。
气候因子和根际微生物群的变化导致植物在不利的环境条件下调整其代谢策略以生存。植物代谢产物的变化可以介导农作物的生长和发育,并与植物根际的根际微生物相互作用。了解环境因素,根际菌群和烟草代谢产物之间的相互作用,是通过在中国尤恩南的四个典型代表性烟草种植地点使用综合的元基因组和代谢组策略进行了一项研究。结果表明,农艺和生化特征受到温度,降水(PREP),土壤pH和高度的显着影响。相关分析显示,温度与叶片的长度,宽度和面积有显着的正相关性,而PREP与植物高度和有效的叶子数相关。此外,烘焙叶的总糖和还原的糖含量明显更高,而在现场烟叶中,总氮和总生物碱水平较低,而Prep较低。与其他三个地点相比,在Chuxiong(CX)的不同丰富的代谢物(DMS)中,总共770个代谢产物被检测到,其中二次代谢物在两种叶子和根中都更丰富。共有8479种,属于2,094个属,有420个单独的垃圾箱(包括13个高质量的垃圾箱),它们被检测到851,209个CDSS。微生物的门水平,例如euryarchaeota,粘菌球和脱氧核糖核,在CX部位显着富集,而假胞植物在高温位点富集了良好的prep。相关分析表明,低prep位点样品中的代谢化合物与二氨基丁酸,nissabacter,nissabacter,alloactinosynnema和catellatospora和catellatospora和catellatospora呈正相关,并与niculibibacterium,Noviherbasterium,Noviherbasuspirillim和Limnobrim s himnicibrim and Novibasterium s himnicibrim seriaterts re招募。根际诱导的二氨基丁基菌,尼萨拉克菌,同骨促和catellatospora
基于碳的纳米材料(CNM)治疗,尤其是石墨烯 - 氧化物(GO)已经显示出对分枝杆菌的有希望的活性(De Maio等,2019)。即使GO没有显示直接的杀菌活性,它也能够将分枝杆菌置于网中,从而干扰正常的巨噬细胞感染(De Maio等,2019)。此外,由于活性氧(ROS)产生的增加,二线抗TB药物LineZolid的共同给药导致了协同的抗MTB效应(De Maio等人,2020年)。然而,GO板与异念珠菌或amikacin的相互作用干扰并阻碍了抗生素活性(De Maio等,2020)。此外,当基于外周血单核细胞的MTB感染模型中使用GO时,我们观察到控制分枝杆菌复制的失败,这在很大程度上是由于抗单核细胞和CD4 T细胞的毒性(Salustri et al。,2023)。
© 2024 作者,更正出版物 2024。开放获取。本文根据知识共享署名 4.0 国际许可获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
1 教育部老年营养与健康重点实验室,北京食品营养与人体健康高精尖创新中心,北京工商大学食品添加剂工程技术研究中心,100048 北京,中国 2 中央旁遮普大学科学与技术学院生物技术系,54590 拉合尔,巴基斯坦 3 拉合尔生物与应用科学大学生物科学学院生物技术系,53400 拉合尔,巴基斯坦 4 马拉坎德查克达拉大学生物技术系,18800 开伯尔-普赫图赫瓦省,巴基斯坦 5 乔伊布杜卡利大学科学学院 BIOMARE 实验室,24000 EL 杰迪代,摩洛哥 6 葡萄牙天主教大学,CBQF – 生物技术与化学中心 – 联合实验室,高等生物技术学院, 4169-005 Porto, Bulgaria 7 Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh,沙特阿拉伯 *通讯作者:yangzhennai@163.com (Zhennai Yang); joao.rocha73@gmail.com (João Miguel Rocha)