(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年3月24日发布。 https://doi.org/10.1101/2024.03.24.586472 doi:Biorxiv Preprint
运动皮层 (MC) 如何在动态环境中从复杂的肌肉骨骼系统产生有目的且可推广的运动?为了阐明潜在的神经动力学,我们使用目标驱动的方法来对 MC 进行建模,将其目标视为控制器,通过期望状态驱动肌肉骨骼系统以实现运动。具体来说,我们将 MC 制定为循环神经网络 (RNN) 控制器,该控制器产生肌肉命令,同时接收来自生物学上准确的肌肉骨骼模型的感觉反馈。鉴于在高级物理模拟引擎中实现的这种实时模拟反馈,我们使用深度强化学习来训练 RNN,以在指定的神经和肌肉骨骼约束下实现所需的运动。训练模型的活动可以准确解码实验记录的神经群体动态和单个单元 MC 活动,同时很好地推广到与训练明显不同的测试条件。同时进行目标和数据驱动的建模,其中我们使用记录的神经活动作为 MC 的观察状态,进一步增强了直接和可推广的单个单元解码。最后,我们表明该框架阐明了神经动力学如何实现灵活控制运动的计算原理,并使该框架易于用于未来的实验。
我们提出了一个多区域大脑模型,该模型探讨了内部海马区域在空间嵌入决策任务中的作用。利用累积的任务,我们模拟了反映hippocampus Ca1区域内形成的认知图的决策过程。我们的模型集成了将网格和位置单元格结合的两分记忆支架结构,并与复发性神经网络(RNN)一起基于感觉输入和网格单元格表示,以模拟动作选择。我们证明,在模型中内侧内侧皮层(MEC)和CA1中的位置和证据信息的联合编码复制了对位置细胞行为的实验观察,并迅速学习。我们的发现表明网格单元被共同调节以定位和证据。
*通信:Nobuhiko Hoshi,动物分子形态实验室,23动物科学系,科比大学农业科学研究生院,1-1 Rokkodai,Nada,Kobe,Koobe,24 Hyogo 657-8501,日本;电子邮件地址:nobhoshi@kobe-u.ac.jp(N。Hoshi)。25
通过手术和放化疗相结合的方法,高达 90% 的 Wilms 肿瘤病例可以治愈,但诸如弥漫性间变性 Wilms 肿瘤等难治性肿瘤类型则带来了巨大的治疗挑战。我们的多组学分析揭示了一种独特的沙漠状弥漫性间变性 Wilms 肿瘤亚型,其特点是免疫/基质细胞耗竭、TP53 改变和 cGAS-STING 通路下调,占所有弥漫性间变性病例的三分之一。这种亚型还以 CD8 和 CD3 滤过率降低以及涉及组蛋白去乙酰化酶和 DNA 修复的致癌通路活跃为特征,与不良临床结果相关。这些致癌通路在间变性 Wilms 肿瘤细胞模型中被发现是保守的。我们认为组蛋白去乙酰化酶和/或 WEE1 抑制剂是这些肿瘤的潜在治疗弱点,它们也可能恢复肿瘤的免疫原性并可能增强免疫疗法的效果。这些见解为预测结果和针对个体免疫状况制定针对侵袭性儿童威尔姆斯肿瘤的个性化治疗策略提供了基础。
这也使得直接在原子水平上研究酶反应的整个过程成为可能,为酶学的新领域打开了大门。这将是根据反应中间体的结构(即酶的真实活性状态)合理设计催化剂和药物的第一步。 出版信息 标题:在原子分辨率下可视化光裂解酶的 DNA 修复过程 作者:Manuel Maestre-Reyna*、Po-Hsun Wang、Eriko Nango、Yuhei Hosokawa、Martin Saft、Antonia Furrer、Cheng-Han Yang、Eka Putra Gusti Ngurah Putu、Wen-Jin Wu、Hans-Joachim Emmerich、Nicolas Caramello、Sophie Franz-Badur、Chao Yang、Sylvain Engilberge、Maximilian Wranik、Hannah Louise Glover、Tobias Weinert、Hsiang-Yi Wu、Cheng-Chung Lee、Wei-Cheng Huang、Kai-Fa Huang、Yao-Kai Chang、Jianh-Haur Liao、Jui-Hung Weng、Wael Gad、Chiung-Wen Chang、Allan H. Pang、Kai-Chun Yang、Wei-Ting Lin、 Yu-Chen Chang、Dardan Gashi、Emma Beale、Dmitry Ozerov、Karol Nass、Gregor Knopp、Philip JM Johnson、Claudio Cirelli、Chris Milne、Camila Bacellar、Michihiro Sugahara、Shigeki Owada、Yasumasa Joti、Ayumi Yamashita、Rie Tanaka、Tomoyuki Tanaka、Fangjia Luo、Kensuke Tono、Wiktoria Zarzycka、Pavel Müller、Maisa Alkheder Alahmad、Filipp Bezold、Valerie Fuchs、Petra Gnau、Stephan Kiontke、Lukas Korf、Viktoria Reithofer、Christian Joshua Rosner、Elisa Marie Seiler、Mohamed Watad、Laura Werel、Roberta Spadaccini、Junpei Yamamoto、So Iwata、Dongping Zhong、Joerg Standfuss、Antoine Royant、Yoshitaka Bessho*, Lars-Oliver Essen*, Ming-Daw Tsai* <杂志> Science < DOI > 10.1126/science.add7795 补充信息 [1] X射线自由电子激光器(XFEL)
Ali Akbari 1,2,3,Alison R. Barton 2,3,Steven Gazal 4,5,6,Zheng Li 7,Mohammadreza Kariminejad 8 8,Annabel Perry 2,3,Yating Zeng Zeng Zeng 4,9,Alissa Mittnik 10,Nick Patterson 2,3,Nick Patterson 2,3,Alk alk alk 1,11 l. 3,12,13 , Eric S. Lander 3,14,15 , Ron Pinhasi 16,17 , Nadin Rohland 1,2,3,11 , Swapan Mallick 1,2,3 , and David Reich 1,2,3,11 Correspondence to: Ali_Akbari@hms.harvard.edu , reich@genetics.med.harvard.edu
术语 TiN:氮化钛 MgO:氧化镁 TMN:过渡金属氮化物 FCC:面心立方 B1:岩盐结构 UHV:超高真空 TEM:透射电子显微镜 STEM:扫描透射电子显微镜 HAADF:高角度环形暗场 DFT:密度泛函理论 MEAM:改进的嵌入原子方法 XRD:X 射线衍射 ToF-ERDA:飞行时间弹性反冲检测分析 BF:明场 FIB:聚焦离子束 SEM:扫描电子显微镜 FFT:快速傅里叶变换 DOS:态密度 FWHM:半峰全宽 GSFE:广义堆垛层错能 OP:重叠布居
合成转录因子有望成为阐明基因表达与表型之间关系的工具,因为它允许对基因表达进行可调改变,而无需对所研究的基因座进行基因组改变。然而,植物转化需要数年时间、高成本和技术技能,限制了它们的使用。在这项工作中,我们开发了一种名为 VipariNama (ViN) 的技术,其中基于烟草脆裂病毒的载体用于快速部署基于 Cas9 的合成转录因子并在植物体内重新编程基因表达。我们证明 ViN 载体可以在数周内在本氏烟、拟南芥 (Arabidopsis thaliana) 和番茄 (Solanum lycopersicum) 中系统地、持续地激活或抑制多个基因。通过探索包括 RNA 支架、病毒载体集合和病毒工程在内的策略,我们描述了如何提高调控的灵活性和有效性。我们还展示了这种转录重编程如何对代谢表型产生可预测的变化,例如本氏烟草中的赤霉素生物合成和拟南芥中的花青素积累,以及发育表型,例如本氏烟草、拟南芥和番茄中的植物大小。这些结果证明了如何使用基于 ViN 载体的赤霉素信号不同方面的重编程在几周内设计一系列植物物种的植物大小。总之,ViN 将产生表型的时间从一年多缩短到几周,为合成转录因子支持的假设检验和作物工程提供了一种有吸引力的转基因替代方案。
已经提出了几种用于SIBS的阴极活性材料(CAM)家族,包括分层氧化物,聚苯二元组合和普鲁士蓝色类似物(PBA)。[9–11]后者由于其低成本合成方法而被认为是特别有希望的,消除了对高温处理的需求,通过使用可持续和丰富的金属(例如铁和锰)(例如铁和锰)所实现的可调氧化还原行为,以及其令人满意的能力和功能能力,并在其开放式框架结构中与大型互联型相互融合,使其综合构成了3D的开放式结构。[9,12,13]此外,它们可以在水性电解质(有限的电池电压)和类似于LIB的有机电解质中进行操作,从而实现了较高的细胞电压。[14–18]因此,对这些材料进行了强大的研究和商业化工作,包括CATL,Natron Energy和Altris等制造商。[19,20]