摘要:锂离子电池电极通常是通过泥浆铸造来制造的,浆液铸造涉及在溶剂中混合活性材料颗粒,导电碳和聚合物粘合剂,然后在电流收集器(Al或Cu)上铸造并烘干涂层(AL或CU)。这些电极的功能性,但在孔网络渗透,电子连接性和机械稳定性方面仍然有限,导致循环时电子/离子电导率和机械完整性较差,从而导致电池降解。为了解决这个问题,我们通过静电纺丝和热解的结合来制造类似毛状的碳 - 铁织物。与浆液铸fe 2 O 3和基于石墨的电极相比,对于半细胞和完整的细胞测试,碳 - 铁织物(CMF)电极提供了增强的高速容量(10C及以上)和稳定性(后者均具有标准锂镍含量镍含量的含量含量液化液含量含量液化液含量(LNMO))。此外,CMF是独立且轻巧的;因此,未来的研究可能包括将其缩放为小袋细胞的阳极材料和18,650个圆柱电池。关键字:锂离子电池,碳 - 金属织物,电纺,独立电极,电流收集器
钠离子电池有望彻底改变能源景观,提供更可持续的和潜在的低成本替代锂离子。Nei Corporation处于这项创新的最前沿,为研究人员和开发人员提供了必不可少的构件:高级阴极和专门为钠离子电池设计的阳极材料。我们的选择包括针对高容量和延长寿命制定的创新阴极材料以及各种阳极选项。
我们一直在与电池材料公司进行对话。这些主题和关键问题将充当这项研究的关键内容。它们包括:•区域电池阳极能力•补贴要求,使电池制造具有成本效益•电池阳极需求;这对石油焦炭供应的影响•未来制造设施的预测,概率和地理•投资成本和投资者愿意投资的意愿?•政府对电池材料的政策•需要电池阳极的人;以多少数量和质量•电池阳极的客户•电池阳极制造的环境规则和规定•电池阳极市场的尺寸(天然和合成石墨)•电池阳极生产商配置文件•电池阳极制造的完整生命周期的碳足迹•能源部(DOE)(DOE)未来对电池的资金和EVS•EVS•EVS•EVS•EVS•EVS•EVS•net Zero Funding Initiative
Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:本研究论文探讨了用于高性能锂离子电池的多孔活性炭阳极的复杂领域,以满足对先进储能系统日益增长的需求。研究首先深入研究各种合成方法,包括物理和化学活化以及混合方法,旨在优化孔隙率和表面化学。对结构特征的详细研究包括表面积、孔分布、形态和表面化学。先进的显微镜技术和表征工具提供了对结构特征和电化学性能之间复杂相互作用的洞察。走出实验室,本文探讨了多孔活性炭阳极的潜在应用。在电动汽车中,这些阳极有望提高能量和功率密度,这是广泛采用电动交通的关键因素。对于便携式电子设备,重量轻和安全性提高使其成为有吸引力的选择。此外,该研究评估了将多孔活性炭阳极集成到电网规模储能中的可行性,有助于提高可再生能源整合的稳定性和可靠性。解决了环境问题,评估了多孔活性炭阳极的可持续性和可回收性。本文最后总结了主要发现,强调了多孔活性炭在推进锂离子电池技术方面的重要性,并提出了未来的研究方向以克服当前的挑战。大量的参考文献强调了该研究的跨学科性质,结合了多种来源,提供了该领域的全面概述。关键词:电池技术、形态、显微镜、多孔、活性、可再生。1.简介:随着世界向可持续能源解决方案转型,锂离子电池 (LIB) 在为电动汽车、可再生能源存储和便携式电子设备提供动力方面发挥着关键作用。传统阳极材料(例如石墨)在容量、循环稳定性和倍率能力方面受到限制。多孔活性炭源自多种前体,由于其高表面积、可调节的孔隙率和出色的导电性,为解决这些挑战提供了一种创新的解决方案。这些本研究的第一部分深入研究了花生壳活性炭的制备和开发,强调了多级多孔结构的创建。同时,该研究提出了一种从食物垃圾碎屑生物质中生产食物垃圾活性炭(FAC)的可扩展方法,重点介绍了其物理化学特性和多级多孔形态。
重金属(HM)被确定为关键的环境污染物,其特征在于其极端毒性,在生态系统中积累的能力以及缺乏降解性。汞以离子形式是最有毒的污染物之一,对免疫系统,神经系统和细胞结构构成了严重的风险。用于检测重金属的电化学方法由于能够产生准确的结果,更快地进行分析并达到更高灵敏度水平而引起了相当大的关注。这项研究的主要目标是开发一个基于碳的传感器,适合确定汞汞(II)。在这里,基于氧化石墨烯和金纳米颗粒的优势,我们开发了用-rgo@au修改的碳传感器。使用透射电子显微镜(TEM)和能量分散性X射线光谱(EDS)对所获得的纳米材料(RGO@au)完全表征。通过循环伏安法(CV)进行CPE/RGOAU传感器的电化学表征,方波阳极剥离伏安法(SWASV)用作确定Hg(II)的典型技术。Hg(II)的氧化峰电流与0.66-1.96 ppm的浓度成正比,检测极限为0.31 ppm。在追求实际应用时,传感器接受了其他测试,以测量水样中的Hg(II)浓度。
提高对电池内化学反应的认识。基于光纤的传感器特别适合集成到电池中。[1,7,9–12] 光纤成本低,可以做得非常细,从而能够在电池的不同部位进行精确定位。它们对锂离子和钠离子电池中的恶劣环境也相对惰性,并且可以使用各种基于光谱的分析技术。[7] 通过电池内温度和应变的变化进行感测,间接影响改性光纤的光学特性,也已被证明。例如,Huang 等人将光纤布拉格光栅插入商用电池,通过温度和压力跟踪化学事件,[10] 而 Wang 等人采用等离子体光纤传感器监测水性锌空气电池中的电化学动力学。[11] Ghannoum 等人在许多论文中报道了使用光纤倏逝波 (FOEW) 光谱来表征电池。 [9,13] 例如,使用嵌入式光纤根据石墨的电致变色特性估算 SOC。 [14] 我们之前还使用过 FOEW 光谱来比较完全嵌入或放置在磷酸铁锂 (LFP) 正极表面的光纤的传感和电池性能。 在这些实验中,光纤传感区域的光调制也可能与 LFP 中铁的氧化和还原有关。 [15,16] 光纤在电池中的应用仍然处于相当低的技术准备水平,在商用电池中可能并非易事,但有可能为 BMS 提供重要信息,以优化电池组的使用。 总体而言,还必须提高对电池化学如何调节光纤/电池界面光的了解。锂离子电池最关键的安全问题之一是阳极形成锂枝晶的风险。[17–19] 这会导致电池短路,通常源于充电过程中锂离子嵌入速率不够时的锂沉积。金属锂沉积也是导致电池老化的一个重要因素[17],例如导致容量衰减速度加快。人们采用了各种各样的实验技术来分析和检测锂沉积。[17–19] 然而,这些技术中的大多数都基于大型、先进且昂贵的仪器,而这些仪器通常需要专门的实验电池或原型电池。其中一些技术也不是
开发锂氧 (Li-O 2 ) 电池对于实现储能装置的高能量密度至关重要。由于正极试剂氧气重量轻,基于 Li 2 O 2 的形成,锂氧电池具有 3500 Wh kg -1 的高理论能量密度。然而,它们面临着来自金属负极、空气电极和不稳定电解质的若干挑战。虽然大多数研究都集中在空气电极上,但负极保护的重要性也不容忽视。在本综述中,我们旨在了解锂氧电池中锂负极面临的挑战,包括锂枝晶的生长、锂与电解质中活性物质之间的寄生反应以及氧气交叉效应。此外,还将介绍锂氧电池中锂保护的最新进展。本综述强调了负极保护的重要性,尤其是在富氧环境中,并可为未来锂氧电池的发展提供指导。