作为能源转换和存储设备,对可充电电池的需求正在增长。1–5如今,可充电金属离子电池在全球经济的可持续发展中起着重要作用。 在普通的金属离子电池中,锂离子电池是能源存储的主导媒介,可能会促进间歇性能源的可持续存储。 但是,电动汽车的蓬勃发展和大规模的锂离子电池应用使人们担心李为储备。 在很重要的情况下,na很丰富且便宜。 最近,研究人员广泛考虑了Na-ion电池的出现。 开发具有较长循环寿命的NA电池,并且没有记忆效应具有重要的战略意义。 NA电池的电极投影和电池组装过程与LI电池没有明显的差异。 尽管能量密度低于LI电池,但NA电池对于大规模储能应用而言更为优势。 但是,较大的离子半径是NA电池的基本问题。 LI +和Na +之间离子半径的差异导致NA电池的性能低于LI电池。 我们需要找到适合NA电池的新电极材料。 最近的研究已经提出了一种预测分层Na +氧化物构型的简单方法,该方法的效果已通过验证了其效果。1–5如今,可充电金属离子电池在全球经济的可持续发展中起着重要作用。在普通的金属离子电池中,锂离子电池是能源存储的主导媒介,可能会促进间歇性能源的可持续存储。但是,电动汽车的蓬勃发展和大规模的锂离子电池应用使人们担心李为储备。在很重要的情况下,na很丰富且便宜。最近,研究人员广泛考虑了Na-ion电池的出现。开发具有较长循环寿命的NA电池,并且没有记忆效应具有重要的战略意义。NA电池的电极投影和电池组装过程与LI电池没有明显的差异。尽管能量密度低于LI电池,但NA电池对于大规模储能应用而言更为优势。但是,较大的离子半径是NA电池的基本问题。LI +和Na +之间离子半径的差异导致NA电池的性能低于LI电池。我们需要找到适合NA电池的新电极材料。最近的研究已经提出了一种预测分层Na +氧化物构型的简单方法,该方法的效果已通过
源自生物质废物资源的硬碳(例如燕麦片,稻壳,甘蔗渣,香蕉皮,花生贝壳,苹果Pomace和Corncob)受到了广泛的关注,这是由于可逆的能力以及成本和可持续性考虑因素。[6–12]碳化后生物质的自然微观结构保留在碳化后,提供大量的缺陷和毛孔以及随机取向的假含量结构域。[13]固有的通道和孔创建了相互联系的3D结构,可改善电解质渗透,并提供更多的钠途径和离子缓冲库。[14]此外,一些剩余的杂原子(N,S,P等)可以通过直接的电动积极共价键或引入发起电子受体状态的碳空位缺陷来提供更多的存储位点。[15]
本文档中有关公司业务或拟议业务的陈述,不是历史事实,是涉及风险和不确定性的前瞻性陈述,例如描述公司未来计划,目标或目标的估计和陈述,包括公司或管理层期望发生陈述条件或结果的效果。由于前瞻性陈述解决了未来的事件和条件,因此它们涉及固有的风险和不确定性。在每种情况下的实际结果可能与此类陈述中当前预期的结果有重大不同。投资者被告知不要过分依赖前瞻性陈述。
可充电电池正在加速从化石燃料到可再生能源的过渡。考虑到所需的大量电池材料,材料和流程中的可持续性是最重要的。在各种下一代电池化学中,锂离子蝙蝠(ALIBS)在本质上是安全的,即使是在高功率密度下,也可以在基于非水溶液的锂离子细胞的现有生产过程中实施。例如,正如Li等人首先提出的,[1] ALIBS是含有有机溶剂的常规电池的可持续替代品,因为水性电力是环保的,不可易受的,并且不可易受的。虽然需要认真解决锂开采的道德问题和环境影响,但水溶液的离子电导率较高,可以为Alibs提供更具吸引力的快速充电能力。然而,水的狭窄电化学稳定性窗口(ESW)为1.23 V极大地阻碍了其水力电解,导致水电解会导致氢进化反应(HER)和氧气
该公司演讲日期为2024年6月29日(“演示”)是由Li-Metal Corp.(“ Li-Metal”或“ Company”)的管理层编写的,并基于公共信息和公司的机密信息。此演示文稿仅用于信息目的,并且仅由Li-Metal授权的潜在“认可”和其他合格的投资者提供机密,以评估公司的证券(“证券”)。本演讲不构成出售给任何人的要约,或向公众出售的一般要约,或者是公众提供的订阅或购买的一般性招标。严格禁止任何未经授权使用此演示文稿的使用。未经公司事先书面同意,禁止将本演示文稿全部或部分分配给任何媒介。这些幻灯片中包含的信息,与Li-Metal及其业务(“演示材料”)相关的任何其他信息(以书面形式或其他方式)提供给您的信息(以书面形式或其他信息),可能会更新,完成,修订,验证,验证和修正案,恕不另行通知,可能会导致材料更改。演示材料并非旨在提供财务,税收,法律或会计建议,也不旨在包含潜在投资者可能需要的所有信息。证券是高度投机性的。每个潜在投资者都应执行并依靠自己对公司的调查和分析以及任何发行证券的条款,包括涉及的优点和风险,并建议对对公司进行投资的法律,财务和税收后果寻求自己的专业建议。
利用分光光度计系统测量吸收光谱。该系统由 OL 740-20D/IR 光源 (Gooch & Housego) 组成,配备 150 瓦石英卤钨灯,可在 250 nm 至 3500 nm 的波长范围内工作,OL 750-MD 双单色仪 (Gooch & Housego),OL 750- 10 镜面成像光学模块 (Gooch & Housego),816C-SF-6 积分球 (Newport) 和 OL 750-HSD-300 硅探测器模块 (Gooch & Housego),可在 200 nm 至 1100 nm 的波长范围内工作。此外,还使用了 OL 750-C 控制器 (Gooch & Housego),以便在设置和计算机之间提供通信,并使用 OL 83A 可编程直流电流源 (Gooch & Housego) 负责控制钨灯的电流输入。利用白色标准进行相对反射率测量。获得的反射光谱范围从 350 nm 到 1100 nm。结果与讨论
第一个周期的差异在用石墨作为阳极和用硬碳作为阳极的阳极和Na-ion电池之间的不可逆损失
Nexeon是锂离子电池高级硅阳极材料的领先国际开发商和制造商。这些对于实现可持续的未来至关重要。Nexeon的电池材料可实现明显更高的电池能量密度,从而设计较小,更具成本效益的电池。这会提高多种应用程序的性能,包括电动汽车,范围和充电时间可以大大改善,从而解决了关键的消费者进入障碍。nexeon总部位于牛津郡,伦敦,牛津,剑桥“金三角”,在日本和韩国运营。它拥有一支强大的多学科团队,在科学,工程和制造业方面具有专业知识。有关更多详细信息,请访问https://www.nexeon.co.uk
手稿版本:作者接受的手稿 WRAP 中呈现的版本是作者接受的手稿,可能与已发布的版本或记录版本不同。 永久 WRAP URL:http://wrap.warwick.ac.uk/170822 如何引用:请参阅已发布的版本以获取最新的书目引用信息。如果已知已发布的版本,上面链接的存储库项目页面将包含有关访问它的详细信息。 版权和再利用:华威研究档案门户 (WRAP) 在以下条件下开放华威大学研究人员的这项工作。版权 © 和此处展示的论文版本的所有道德权利属于个人作者和/或其他版权所有者。在合理和可行的范围内,WRAP 中提供的材料在提供之前已经过资格检查。完整项目的副本可用于个人研究或学习、教育或非营利目的,无需事先许可或收费。只要注明作者、标题和完整的书目详细信息,并提供原始元数据页面的超链接和/或 URL,并且内容不会以任何方式更改。出版商声明:有关更多信息,请参阅存储库项目页面的出版商声明部分。有关更多信息,请联系 WRAP 团队:wrap@warwick.ac.uk。
纳米多孔锡2 O 7(nptno)材料通过用离子液体(IL)作为指导温度的纳米多孔结构合成的溶胶 - 凝胶方法。nptno即使以50°C的充电速率,在5 c时为1000个周期和lini 0.5 mn 1.5 o 4-耦合的全细胞容量重新构成的全细胞能力接力为81%和87%的87%和87%cass in 1000 cycles at 1 c cycles at 1 c cycles at 1 c cycles nptno的高可逆能力为210 mAh g –1。 对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。 测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。 受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。 因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。nptno的高可逆能力为210 mAh g –1。对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。