连续过程再生方法首先用于计算再生过程的谱密度。该方法的主要特点是保留“锯齿状”实现中给出的转折点(极值)的值和序列。在这样做的同时,基于循环计数方法的方法将给出完全相同的疲劳耐久性估计,因为初始条件 MAX-MIN-MAX ... 得到保证。为了通过谱密度研究随机过程标准偏差(RMS),原始序列的外推由连续余弦函数提供。转折点处的兼容性条件确保了过程及其一阶导数的连续性。为了确定频率,利用了开发过程中获得的一些样本实现的信息。作为其中一个应用,该方法旨在用于分析两种在耐久性评估任务中评估载荷的竞争方法的可比性,即应用循环计数方法和基于过程谱密度方法的方法。对建模过程进行了一些其他推测。关键词:材料疲劳、耐久性估计、余弦外推、循环计数、谱密度
我们分析了量子纠错中的表面代码。在这些代码中,量子比特用单元格网格进行编码,这些单元格可能会受到错误的影响。这些错误无法直接检测到;相反,我们检查编码的稳定器,它们对应于网格上的边缘。这使我们能够找到围绕错误的循环。我们分析了纠正这些循环上的错误的各种过程的行为。绝对零度过程是最稳定的,我们运行模拟以确定它可以在平均时间为 O(n3) 的时间内纠正平方错误循环。我们证明了绝对零度过程的上限,并证明了改变过程的平均时间复杂度为 Θ(n3)。然后,我们分析概率算法。概率模型模拟显示的行为表明存在一个临界概率,大约为 0.175,在此概率下无法可靠地纠正错误。我们还分析了热浴算法,该算法会给电网引入误差,但只要温度足够小,就会随机纠正大的误差。
我们研究了通过量子动力学模拟经典随机过程的问题,并介绍三种情况,其中记忆或时间量子优势出现。首先,通过引入和分析随机矩阵的嵌入性问题的量子版本,我们表明量子无内存的动态可以模拟必需内存的经典过程。第二,通过将随机过程P的时空成本概念扩展到量子域,我们证明了模拟P比经典成本的量子成本的优势。第三,我们证明,具有量子控件的马尔可夫主方程可访问的经典状态集大于可通过经典控件访问的那些集合,例如,在冷却协议中具有潜在的优势。
摘要:在这项研究中,证实了脑电信号向量的新数学模型,该模型是在脑量表界面操作员多次重复的条件下注册的。研究信号的节奏比已知模型具有许多优势。这个新模型为研究多维分布函数开辟了道路。高阶的初始,中心和混合力矩功能,例如每个脑电图信号分别;以及它们各自兼容的概率特征,其中最有用的特征可以选择。这可以提高大脑 - 计算机界面操作员的心理控制影响(分类)的检测(分类)。基于开发的数学模型,证实了电位信号信号向量的统计处理方法,这些方法包括对其概率特征的统计评估,并有可能对电脑信号的概率特征进行有效的联合统计估计。这为来自不同传感器的信息协调整合提供了基础。在频域中使用高阶函数及其光谱图像作为大脑 - 计算机接口系统中的信息特征。在实验中确定了它们对脑计算机界面操作员的心理控制影响的显着敏感性。将贝塞尔的不平等应用程序应用于信息特征的矢量尺寸(从500次增加到20个数字)的问题,这可以显着降低算法的计算复杂性,以降低算法的计算复杂性。也就是说,我们在实验上确定,只有20个值的傅立叶估计值的傅立叶估算值的较高级别函数的傅立叶变换非常适合构成大脑计算机界面中信息效率的向量,因为这些频谱组成的统计量占相应的量化量的较高的统计量,这是相应的统计量的均可构图。信号。
摘要 . 继我们最近的工作之后,我们研究了一种非平衡量子自旋系统的随机方法。我们展示了该方法如何应用于各种物理可观测量和不同的初始条件。我们提供了广泛适用的精确公式,用于描述量子猝灭后期望值和相关函数的时间依赖性,这些公式以经典随机过程的平均值表示。我们进一步探讨了在动态量子相变存在下经典随机变量的行为,包括它们的分布和相关函数的结果。我们详细介绍了相关随机微分方程的数值解,并研究了经典描述中波动的增长。我们讨论了随机方法当前实施的优势和局限性以及进一步发展的潜力。
连续过程再生方法首先用于计算再生过程的谱密度。该方法的主要特点是保留“锯齿状”实现中给出的转折点(极值)的值和序列。这样做的同时,基于循环计数方法的方法将给出完全相同的疲劳耐久性估计,因为保证了初始条件 MAX-MIN-MAX ...。为了通过谱密度研究随机过程标准偏差 (RMS),通过连续余弦函数提供原始序列的外推。转折点处的兼容性条件确保了过程及其一阶导数的连续性。为了确定频率,采用了从开发中获得的一些样本实现中的信息。作为应用之一,该方法旨在用于分析耐久性评估任务中两种相互竞争的载荷评估方法的可比性,即应用循环计数方法和基于过程谱密度方法的方法。对建模过程进行了一些其他推测。关键词:材料疲劳、耐久性估计、余弦外推、循环计数、谱密度
对连续时间中的随机现象进行建模是一项重要而又具有挑战性的问题。通常无法获得解析解,而数值方法可能非常耗时且计算成本高昂。为了解决这个问题,我们提出了一个专门针对量子连续时间随机过程的算法框架。该框架由两个关键程序组成:数据准备和信息提取。数据准备程序专门用于编码和压缩信息,从而显着降低空间和时间复杂度。这种减少对于随机过程的关键特征参数而言是指数级的。此外,它可以作为其他量子算法的子模块,缓解常见的数据输入瓶颈。信息提取程序旨在以二次加速解码和处理压缩信息,扩展量子增强蒙特卡罗方法。该框架展示了多功能性和灵活性,可在统计学、物理学、时间序列分析和金融领域得到应用。举例来说,默顿跳跃扩散模型中的期权定价和集体风险模型中的破产概率计算,展示了该框架捕捉极端市场事件和纳入历史相关信息的能力。总的来说,这个量子算法框架为准确分析和增强对随机现象的理解提供了一个强大的工具。
随机过程在物理学、数学、工程学和金融学中起着基础性的作用。量子计算的一个潜在应用是更好地近似随机过程的性质。例如,用于蒙特卡罗估计的量子算法将随机过程的量子模拟与振幅估计相结合,以改进均值估计。在这项工作中,我们研究了与蒙特卡罗方法兼容的模拟随机过程的量子算法。我们引入了一种新的随机过程“模拟”量子表示,其中时间 t 时的过程值存储在量子态的振幅中,从而能够以指数方式高效编码过程轨迹。我们表明,这种表示允许使用高效量子算法来模拟某些随机过程,这些算法使用这些过程的光谱特性与量子傅里叶变换相结合。特别是,我们表明我们可以使用门复杂度为 polylog(T) 的量子电路来模拟分数布朗运动的 T 个时间步,该电路可以连贯地准备布朗路径上的叠加。然后,我们表明这可以与量子均值估计相结合,以创建端到端算法,用于估计时间 O (polylog(T)ϵ − c) 内过程的某些时间平均值,其中 3 / 2 < c < 2 是分数布朗运动的某些变体,而经典蒙特卡洛运行时间为 O (Tϵ − 2),量子均值估计时间为 O (Tϵ − 1)。在此过程中,我们给出了一种有效的算法,以相干方式加载具有不同方差的高斯振幅的量子态,这可能是独立的兴趣所在。
目的:随机过程是电气工程研究生研究的核心课程,对于那些希望专门从事沟通,控制,信号处理和网络的人来说,必不可少的课程。主题对于其他领域(例如机器学习,财务工程,操作研究和算法设计)也非常有用。本课程的主要目的是向学生介绍对概率,随机变量和随机信号(或随机过程)的严格且相当全面的看法。课程的第一部分将从概率和随机变量的全面视图开始。将研究条件概率和期望的概念。一旦看到基础知识,我们将研究随机现象的研究中所需的重要结果,因为它们在信号和噪声的建模中表现出来,即独立性,正常性等。基于这些,我们将研究关键结果,例如中心限制定理,大量定律和收敛概念。本课程的后三分之一将专门研究重要的信号模型,尤其是所谓的广泛固定过程的理论。该课程将以对马尔可夫连锁店的介绍为结束,这些链条是建模和算法开发的通用过程。总体目的是为学生提供与随机过程相关的潜在结构,特别是作为信号和系统模型,并学习在涉及随机现象的应用中工作的主要工具。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。