摘要:伺服控制在位置跟随方式下要求具有快速的跟随性能和较高的稳态精度,特殊环境应用的伺服对电机的性能和可靠性要求更为严格。伺服系统的发展经历了最初的电液伺服,采用直流有刷电机,其速度、可靠性和使用寿命都比较有限。如今的交流伺服系统主要是交流异步或永磁同步电机,伺服系统的发展越来越朝着交流化、永磁化、智能化、集成化、小型化、网络化、模块化的方向发展。本文主要研究永磁同步交流电机的伺服控制。永磁同步交流电机分为永磁同步电机和永磁无刷直流电机。研究发现基于永磁同步电机的伺服控制在跟随性能和稳态精度上优于基于永磁无刷直流电机的伺服控制。
微型化是一种快速发展的方法,可用于生产非常小的电子、机械和光学产品和设备,包括计算机、半导体芯片、传感器、生物传感器、IC 和内置于车辆中的微处理器等等。如今,人们可以看到小型便携式设备,可以随时随地放在口袋中携带,其背后的原因是技术可以灵活地将组件微型化,并具有许多优点和应用。微型化不仅在电子产品中,还在纳米技术的进步中发挥着重要作用,这使得制造具有特殊功能和特性的各种结构成为可能。小尺寸和轻便性是混合微电路的优势;它们长期以来一直用于起搏器的除颤器、助听器、柔性聚酰亚胺结构和许多其他应用。便携式设备的微型化和集成化日益显著,可穿戴计算正在实现。本文旨在理解小型化的概念、其优点、缺点和应用
摘要:光学模拟计算相较于传统数字计算具有并行计算、速度快、能耗低的天然优势。目前,片上光学模拟计算领域的研究主要集中在经典数学运算上,尽管量子计算具有诸多优势,但基于超表面的片上量子模拟器件尚未被展示。本文基于绝缘体上硅(SOI)平台,设计了一种特征尺寸为60×20 µm 2 的片上量子搜索器。利用经典波模拟基于叠加原理和干涉效应的量子搜索算法,同时结合片上超表面实现调制能力。当入射波聚焦在标记位置时,即可找到标记项,这与量子搜索算法的效率完全相同。所提出的片上量子搜索器有利于基于波的信号处理系统的小型化和集成化。
小型化一直是电子设备的发展趋势,微电子电路与传感器集成化的巨大成就使得微电子设备在当今生活中得到广泛的应用。在设备小型化的背景下,对微型电池的需求不断增加。为保证微电子设备能够有效供电,必须在其尺寸受限的情况下进一步提高其能量和功率密度。在探索高容量电池活性材料的同时,发展制备技术以有效发挥材料的潜力至关重要。传统的电极制备方法,如电化学沉积[1-2]、化学气相沉积(CVD)[3-4]、物理气相沉积(PVD)[5-6]和原子层沉积(ALD)[7],需要洁净室、昂贵的设备和复杂的操作工艺,制约了小尺寸能源装置的制造速度。
电子学是当代科学与工程中发展最快的学科之一。由于对微型化和集成化的不断追求,大多数电子元件都是在所谓的微型尺度上设计和制造的。出于这个原因,专业人士中建立了微电子学这个专业术语。如今,微电子元件是每种工业或家用电子设备不可或缺的一部分。不幸的是,像其他设备一样,微电子元件的使用寿命也是有限的。其可靠性的基本问题之一是连接。在微电子封装[17]中,使用焊接、胶合和键合连接,其中焊点是最重要的[13, 15, 27]。大多数焊点损坏是由于热机械载荷造成的,其直接原因是由于连接材料的热膨胀系数不匹配而产生的应力[17, 35, 40]。据估计,微电子封装中约 65% 的损坏与热机械问题有关 [2, 38]。可靠性被定义为物体在给定环境条件下、在一段规定时间内正常运行的属性。可靠性的数学描述允许在定义的操作条件下评估物体故障的概率。电子封装接头可靠性预测的传统方法之一是基于所谓的双材料界面的理论分析。双材料界面是指两种具有不同热机械性能的材料之间的机械连接。
摘要:随着微电子封装与集成化的快速发展,封装结构中微焊点在冲击载荷作用下的失效风险日益受到关注。然而,由于尺寸减小和接头结构的演变,基于铜柱的微凸块接头的失效机理和可靠性性能很少能借鉴现有的板级焊点研究成果。本研究针对芯片上芯片 (CoC) 堆叠互连的微凸块接头的开裂行为,对 CoC 测试样品进行反复跌落试验以揭示裂纹形貌。研究发现,导致微凸块失效的裂纹首先在金属间化合物 (IMC) 层与焊料的界面处萌生,沿界面扩展一定长度,然后偏转到焊料基体中。为进一步探究裂纹扩展机理,采用围线积分法计算了IMC与焊料界面处裂纹尖端的应力强度因子(SIF),定量分析了焊料厚度和裂纹长度的影响,并与裂纹偏转准则相结合。将SIF与焊料-Ni界面和焊料基体的断裂韧性相结合,建立了裂纹偏离原始扩展路径的准则,可用于预测裂纹偏转的临界裂纹长度和偏转角。最后,通过板级跌落试验验证了焊料厚度与主裂纹临界偏转长度和偏转角之间的关系,并简要讨论了焊料基体中晶粒结构对实际失效寿命的影响。
智能药丸技术代表了医疗保健领域的一项突破性进步,将微型电子元件集成到可摄取的药丸中,彻底改变了药物输送、诊断和监测。本综合概述深入探讨了智能药丸技术的组件、功能、应用、注意事项和未来发展方向。智能药丸的核心组件包括可摄取的传感器、电子模块和电源,可实现一系列功能。这些功能包括药物依从性监测、诊断成像、生理监测和靶向药物输送。患者口服智能药丸,当它们穿过胃肠道时,它们会将数据无线传输到外部设备,供医疗保健提供者进行分析。智能药丸在各个医疗保健领域都具有众多优势。它们可以增强慢性病的药物依从性和疾病管理,促进胃肠道的非侵入性诊断筛查,并可作为临床研究中的宝贵工具。然而,确保患者数据的安全性、监管批准和隐私是部署智能药丸技术的关键考虑因素。智能药丸技术的未来发展方向侧重于小型化、集成化和扩展应用。持续的进步旨在使智能药丸更加紧凑、高效和用户友好,而跨学科合作则推动创新并解决开发和应用方面的挑战。智能药丸的前景不仅局限于胃肠道诊断和药物输送,还扩展到个性化医疗、靶向癌症治疗和神经病学。
1. 发布原因:本指令修订了 2017 年 11 月发布的 6008 号指令,并制定了退伍军人事务部 (VA) 的信息技术 (IT)、IT 相关和其他资产和资源的采购和管理政策。VA 的 IT、IT 相关和其他资产和资源是该部门的核心资源,有效管理这些资产和资源对于为国家退伍军人提供服务至关重要。本指令仅涉及可用于采购资源的资金类型。这种监督对于确保整个 VA 企业的项目与信息管理信息保证政策、VA 范围的规则、标准和指导保持一致是必要的。此外,该政策确保所有 IT 资助和 IT 相关资产都在 VA 的 IT 系统拨款账户的限制和意图范围内获得,并就何时必须通过 IT 系统账户或其他授权账户资助 IT 相关资产提供具体指导。经与 VA 管理部门和办公室协商,VA 的所有 IT 和 IT 相关资产、资源和服务均受 VA 首席信息官 (CIO) 的法律、行政命令和政策的约束。这包括信息保证、安全和隐私;企业架构、标准和规范;以及 IT 管理、技术和运营内部控制,无论资金来源如何,除非拨款、法规或政策另有说明。这项政策取代了之前关于这一主题的所有备忘录,是信息技术、网络连接设备(即“物联网 (IoT)”)和信息安全风险、程序和法规变化幅度和速度不断加快的必然结果。该政策的全面实施将提高 VA 使用资源的效率,从而根据所有联邦法律、法规和行业最佳实践提供标准化、集成化、可互操作和以退伍军人为中心的信息环境。
绿色和可持续材料的快速发展为应用研究领域开辟了新的可能性。此类材料包括纳米纤维素复合材料,它可以将许多组件集成到复合材料中并为智能设备提供良好的底盘。在我们的研究中,我们评估了将纳米纤维素复合材料转变为信息存储或处理设备的四种方法:1)纳米纤维素可以成为合适的载体材料并保护存储在 DNA 中的信息。2)核苷酸加工酶(聚合酶和核酸外切酶)与光门控域融合后可以由光控制;核苷酸底物特异性可以通过突变或 pH 值变化(读入和读出信息)来改变。3)可以实现半导体和电子功能:我们表明,通过碘处理纳米纤维素取代硅(包括微结构)而呈现电子状态。测量了纳米纤维素的半导体特性,并模拟了包括单电子晶体管(SET)在内的电位及其特性。电流也可以通过 G-四链体 DNA 分子由 DNA 传输;这些以及经典的硅半导体可以轻松集成到纳米纤维素复合材料中。4) 为了详细说明智能纳米纤维素芯片设备的小型化和集成化,我们展示了纳米纤维素中的 pH 敏感染料、纳米孔的创建和细菌膜上的激酶微图案以及数字 PCR 微孔。未来的应用潜力包括纳米 3D 打印和与 DNA 存储和传统电子产品集成的快速分子处理器(例如 SET)。这还将带来用于信息处理的环保纳米纤维素芯片以及用于生物医学应用和纳米工厂的智能纳米纤维素复合材料。
高的问题,在全面进入 2D 数字屏幕界面阶段后,飞 机座舱只有少数的传统机械仪表被保留,大部分的飞 行信息数据都由计算机分析后再在主飞行显示器 ( PFD )上显示出来,这种获取信息的方式大大增强 了飞行员驾驶的安全性。平视显示器( HUD )是飞机 座舱人机交互界面的另一种形式。 HUD 可以减少飞 行技术误差,在低能见度、复杂地形条件下向飞行员 提供正确的飞行指引信息。随着集成化和显示器技术 的不断进步, 20 世纪末至今,飞机座舱有着进一步 融合显示器、实现全数字化界面的趋势。例如,我国 自主研发生产的 ARJ21 支线客机、 C919 民航客机, 其座舱的人机界面设计均采用触控数字界面技术代 替了大部分的机械仪表按钮 [2] 。 20 世纪 70 年代,美军在主战机上装备了头盔显 示系统( HMDs ),引发了空中战争领域的技术革命。 在虚拟成像技术成熟后,利用增强现实( AR )技术 可以直接将经过计算机运算处理过的数据和图象投 射到驾驶员头盔的面罩上。例如,美国 F-35 战斗机 的飞行员头盔使用了虚拟成像技术,将计算机模拟的 数字化信息数据与现实环境无缝融合,具有实时显示 和信息叠加功能,突破了空间和时间的限制。 20 世纪 90 年代,美国麦道飞机公司提出了“大 图像”智能化全景座舱设计理念,之后美国空军研 究实验室又提出了超级全景座舱显示( SPCD )的概 念,充分调用飞行员的视觉、听觉和触觉,利用头 盔显示器或其他大屏幕显示器、交互语音控制系统、 AR/VR/ MR 系统、手 / 眼 / 头跟踪电子组件、飞行员 状态监测系统等,把飞行员置身于多维度的显示与 控制环境中。此外,在空间三维信息外加上预测信 息的时间维度功能也是未来座舱显示器的发展趋势 [3] 。 2020 年,英国宇航系统公司发布了一款第六代 战斗机的概念座舱,去除了驾驶舱中所有的控制操 作仪器,完全依靠头盔以 AR 形式将操作界面显示 出来。由上述分析可知,未来基于 XR 环境下的虚拟 增强型人机界面将成为飞机座舱人机交互的全新途 径之一。 在学术界,有关飞机座舱人机交互界面的研究也 取得了较为丰硕的成果,其中代表性研究成果见表 1 。