9 大希腊 卡坦扎罗大学 UNICZ 大学 10 巴里大学 - 阿尔多莫罗 UNIBA 大学 11 帕尔马大学 - 分支 1 UNIPR 大学 12 佛罗伦萨大学 UNIFI 大学 13 IRCCS 圣马蒂诺综合医院 HSM 医院 14 IRCCS 博洛尼亚神经科学研究所 ISNB 医院 15 比萨圣安娜高等研究院 SSSA 医院 16 Bambino Gesù 儿童医院 OPBG 医院 17 欧洲脑研究所 Rita Levi-Montalcini EBRI 基金会 18 IRCCS SYNLAB SDN SYNLAB 医院 19 Telethon 基金会 ETS TIGEM 基金会 20 Don Carlo Gnocchi 基金会 ONLUS-IRCCS FDG 医院 21 IRCCS 圣拉斐尔 SR 医院 22 Dompè Farmaceutici DOMPE' 公司 23 Alfasigma ALFASIGMA 公司 24 ASG 超导体 ASG 公司 25 TAKIS Srl TAKIS 公司 表 A1:合作伙伴名单
摘要现代时代,组织要防止延误或偏差的流程非常重要,这就是为什么存在质量管理的原因,这是一套允许公司保证其产品和/或服务质量的行动和工具。这项研究工作的主要目的是为应用PMBOK指南和ISO 9001标准的供应链提出质量管理模型。作为通过其IBM 25版中统计软件SPSS获得的结果的一部分,以及从仓库,调度和采摘区的观察表工具;在后测试中观察到增长,从0.307增加到0.658,达到了预测试中几乎两倍的反应。此外,得出的结论是,在领导水平上的正增长为12.5%,在计划级别和运营水平上的8.2%,确定有17%的增长,允许更好的运营维护,这表明该模型的范围更高,使可见的模型的范围更加精确,从而使供应链的持续提高了供应链管理。
在本文中,我们讨论了3个示例,其中微透镜可以成为解决光纤阵列和光子积分电路(PIC)之间耦合挑战的有用工具。这项工作中使用的(阵列)通过光孔反射方法实现了(可以单层集成在PIC的背面,或者可以单独地集成在PIC的后侧,或者可以在PIC的设备侧安装。第一个示例涉及在感应图片的背面蚀刻的硅微透镜(在C波段中运行),目的是用于放松的对齐公差,并使设备侧没有接口纤维。第二个示例涉及实施4毫米长的工作距离扩展的梁(30 µm模式场直径,C型波段)界面,用于电信/数据量应用程序,该应用程序也极大地放松了PIC上的GRATINAL耦合器和A纤维阵列之间的横向和纵向对齐公差。最终示例涉及在这个长的工作距离扩展的梁界面中的隔离器的集成。隔离器堆栈由偏振器(0.55 mm厚),非重生法拉第旋转器(485 µm厚的薄膜闩锁Faraday旋转器)和半波板(HWP,91 µm石英)组成。我们获得了宽带操作,表现出非常低的(1至1.5 dB之间)的插入损失和良好的灭绝比(17至20 dB之间)C波段(约1550 nm)
摘要1摘要(葡萄牙)2认可3目录5图7缩写8术语9 1.简介10 1.1。背景10 1.2。问题语句12 1.3。研究目的14 1.4。研究问题15 1.5。划界15 1.6。论文的轮廓16 2。理论框架17 2.1。人工智能技术及其在军事决策过程中的应用17 2.1.1。人工智能的定义17 2.1.1.1。弱AI和强AI 18 2.1.2。AI集成的水平20 2.1.2.1。 人类内部和自治AI 20 2.1.2.2。 Black-Box AI和可解释的AI 20 2.1.3。 军事决策过程22 2.1.4。 军事决策过程中AI技术整合的当代范式23 2.2。 对AI 25 2.2.1的感知,假设,期望和信任。 技术接受模型:扩展到AI 25 2.2.2。 技术帧27 2.2.3。 对AI的信任及其对MCDMP 28 28 2.2.3.1集成的影响。 信任的定义29 2.2.3.2。 信任AI:信任的维度30 2.2.3.3。 信任AI:技术的可信度30 2.3。 结论31 3。 方法论33 3.1。 研究方法:定性研究33 3.1.1。 时间范围34 3.2。 研究设计:选择和选择34 3.3。 数据收集方法35AI集成的水平20 2.1.2.1。人类内部和自治AI 20 2.1.2.2。Black-Box AI和可解释的AI 20 2.1.3。军事决策过程22 2.1.4。军事决策过程中AI技术整合的当代范式23 2.2。对AI 25 2.2.1的感知,假设,期望和信任。技术接受模型:扩展到AI 25 2.2.2。技术帧27 2.2.3。对AI的信任及其对MCDMP 28 28 2.2.3.1集成的影响。信任的定义29 2.2.3.2。信任AI:信任的维度30 2.2.3.3。信任AI:技术的可信度30 2.3。结论31 3。方法论33 3.1。研究方法:定性研究33 3.1.1。时间范围34 3.2。研究设计:选择和选择34 3.3。数据收集方法35
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
在深刻理解道德考虑的基础上,获得有关道德人工智能系统设计的知识,优先考虑公平性、透明度和问责制;评估真实案例研究并解决实际项目,以开发和部署医疗保健、金融、能源等不同行业的人工智能解决方案;熟练实施人工智能解决方案,利用数据科学解决实际行业挑战;学会与利益相关者、团队成员和非技术受众进行有效沟通,弥合技术专长与业务目标之间的差距;探索以以人为本的方式管理和分析数据的关键方面,并了解干净、可靠的数据在人工智能项目中的重要性;培养识别人工智能机会、评估风险和做出数据驱动决策的能力;建立强调技术专长与以人为本技能相结合的技术和人际交往技能;学习如何以同理心、团队合作和对人类行为和需求的理解来领导人工智能项目。
机翼(A = 16°): 面积.............................................................. 623.2ft2 纵横比.............................................................. 5.6 锥度比.............................................................. 0.636 翼展.............................................................. 59.07ft MAC.............................................................. 10.9ft MAC 前缘............................................. 机身站 471.276 翼型............................................. 波音先进跨音速翼型 扫掠范围.................................................... 16 至 58° 厚度比: BL 93.................................................... 9.7% BL 321.9,尖端............................................. 5.44% 入射角: 夹具,跨度站 124.................................................... -3.15 °
拓扑绝缘体 (TI) 因其独特的物理特性和广阔的应用前景而在光子学和声学领域引起了广泛关注。由于电子学在构建复杂拓扑结构方面具有优势,它最近成为研究各种拓扑现象的一个令人兴奋的领域。在这里,我们利用标准的互补金属氧化物半导体技术在集成电路 (IC) 平台上探索 TI。基于 Su–Schrieffer–Heeger 模型,我们设计了一个完全集成的拓扑电路链,该电路链使用多个电容耦合电感电容谐振器。我们对其物理布局进行了全面的布局后模拟,以观察和评估显着的拓扑特征。我们的结果证明了拓扑边缘状态的存在以及边缘状态对各种缺陷的显着鲁棒性。我们的工作展示了使用 IC 技术研究 TI 的可行性和前景,为未来在可扩展 IC 平台上探索大规模拓扑电子学铺平了道路。
直升机作为一种武器系统,服役时间已快有半个世纪了。旋翼机在二战后开始出现,主要用作观察平台和搜救车辆,如今已发展成为现代战争场景中的主角。在海战中,直升机是特遣部队不可或缺的一部分,能够向地面和水下目标发射毁灭性的火力。在空地战中,技术使直升机成为坦克杀手、部队运输和夜间观察平台。最后,在最不可能出现的空对空作战领域,现代武器已经证明直升机甚至可以有效对抗高性能战术飞机。
摘要 — 随着光通信的覆盖范围不断缩小,光子学正从机架到机架数据通信链路转向需要不同架构的厘米级计算机内应用 (computercom)。集成光学微环谐振器 (MRR) 正成为满足更严格的面积和效率要求的有吸引力的选择:它们通过波分复用 (WDM) 和高带宽密度提供缩放。在本文中,我们介绍了在 45 nm CMOS 中单片集成的用于 computercom 的紧凑型电光发射 (TX) 和接收 (RX) 宏。它们与 MRR 调制器和光电探测器一起工作,并包括所有必要的电子器件和光学器件,以实现片上数据源和接收器之间的光学链路。通过感测驱动电子器件中的光学设备的偏置电流而不是使用外部工作点感测光学器件,实现了最紧凑的热稳定性实现。使用场效应晶体管作为加热元件(在单片集成平台中是可能的)可进一步减少热控制所需的面积和功率。TX 宏的工作数据速率高达 16 Gb/s,消光比 (ER) 为 5.5 dB,插入损耗 (IL) 为 2.4 dB。RX 宏在 12 Gb/s 时灵敏度为 71 µ A pp,BER ≤ 10 − 10。用宏构建的芯片内链路在 10 Gb/s 时实现 ≤ 2.35 pJ/b 的电气效率和 BER ≤ 10 − 10。两个宏都在 0.0073 mm 2 内实现,每个宏的带宽密度为 1.4 Tb/s/mm 2。
