KC-135 上可产生的失重时间约为 30 秒。即使在相对较短的时间内,也可以获得大量有关人体表现的数据和经验。另一方面,时间段太短,无法获得有关失重期间身体生理功能的可靠信息。此外,由于每个抛物线前后的加速度很高,零重力飞行期间获得的生理数据值得怀疑。
在典型的双子座或阿波罗任务的大部分时间里,宇航员将被绑在沙发上。在这次演示中要注意的是双腿抬离地面的趋势,手臂抬离扶手的趋势。出现这种现象的原因是,手臂和腿部的肌肉习惯于在 I-G 下支撑肢体的部分重量,即使在放松时也是如此。在零重力下,没有重量会导致肢体呈现新的放松姿势。在无重力
本文概述了卢森堡大学零重力实验室的发展,该实验室是推动太空操作研究的重要资源。该实验室的主要目标是精确模拟太空中微重力条件下的操作,以便在将太空相关硬件和软件部署到苛刻的外层空间环境之前对其进行全面测试。建立该设施所采用的关键方法包括复制太空代表性基础设施元素,例如真实的照明条件、环氧地板和安装在轨道上的机器人系统。该实验室通过集中式机器人操作系统 (ROS) 网络集成其硬件和软件。研究人员可以进行混合仿真,将机器人系统与预先建模的软件组件相结合,以有效模拟复杂的轨道场景。此外,本文还可作为实验室建设的实用指南。该项目的目的是协助研究界建立类似的设施,并促进太空相关研究和技术发展的进步。
摘要 — 在太空探索领域,浮动平台在科学研究和技术进步中发挥着至关重要的作用。然而,在零重力环境中控制这些平台面临着独特的挑战,包括不确定性和干扰。本文介绍了卢森堡大学零重力实验室 (Zero-G Lab) 中一种将近端策略优化 (PPO) 与模型预测控制 (MPC) 相结合的创新方法。这种方法利用 PPO 的强化学习能力和 MPC 的精度来驾驭浮动平台的复杂控制动态。与传统控制方法不同,这种 PPO-MPC 方法从 MPC 预测中学习,适应未建模的动态和干扰,从而形成适合零重力环境的弹性控制框架。零重力实验室的模拟和实验验证了这种方法,展示了 PPO 代理的适应性。这项研究为在零重力环境中控制浮动平台开辟了新的可能性,有望推动太空探索的发展。
摘要 —本文介绍了 RoboGrav,这是一项专注于在第 42 次 DLR 抛物线飞行活动期间在零重力条件下测试全扭矩传感机械臂的任务。RoboGrav 与德国航空航天中心 (DLR)、KINETIK Space、iBOSS、慕尼黑工业大学 (TUM) 和 Novespace 合作进行,旨在推进扭矩控制机器人操纵器的开发和测试,用于在轨服务 (OOS) 和空间组装任务。本文强调了扭矩感应的重要作用,它增强了零重力条件下的操纵任务。进行了实验测试,以确保控制器在零重力下的自由空间运动期间的稳定性,使用针状末端执行器进行环境相互作用。采用外力感应来评估机器人在不同控制器上的准确性和性能。这也使得能够比较机器人在零重力和全重力环境中的行为,为将地球开发的算法转移到太空应用提供了宝贵的见解。使用 iBOSS“iSSi”接口进行的模拟卫星对接任务展示了机器人通过阻抗控制管理位置误差的能力,从而提高了操作稳定性。为该项目开发的技术,例如扭矩传感器的集成、所提出的基于 FPGA 的联合控制算法和通信接口、高级控制器和决策算法,可以转移到未来的太空任务中。RoboGrav 的扭矩传感器机械臂为未来的太空服务和太空组装任务提供了宝贵的经验和方法。
1. 关于太空种植食物的现状:宇航员已经在太空种植食物,但种植的食物并非人们所期望的那样。多年来,他们一直在种植生菜,并于 2015 年 8 月首次品尝“太空食物”。尽管这些食物是在国际空间站的受控环境中种植的,而不是在行星上,而这正是我试图弄清楚的。2. 关于太空种植食物的主要挑战:一些挑战包括太空中没有重力,这意味着植物没有“定向线”连接到地面。此外,太空就像一个巨大的真空。它空气有限,这使得在其环境中种植食物更加困难。另一个大挑战是温度,因为恒星周围会变得非常热,而在“死”空间中会变得非常冷 - 接近绝对零度。3. 关于如何模拟零重力:要模拟零重力,您需要制作一个回转器,这是一种使用旋转来模拟零重力效应的装置。 4. 模拟零度以下的温度:要模拟零度以下的温度,你需要冷冻种子。5. 模拟真空:要模拟太空中的真空效应,你必须对种子进行真空密封。