我们计算了 K 及其涨落 ⟨ K 2 ⟩ 的期望值;两者都遵循与黑洞力学的贝肯斯坦-霍金面积定律相同的面积定律: ⟨ K ⟩ = ⟨ K 2 ⟩ = A 4 GN ,其中 A 是(极值)纠缠表面的面积。研究还表明,K 在 AdS 中受引力影响,因此会产生度量涨落。这些理论结果很有趣,但尚不清楚如何将这种关于全息量子引力的想法精确扩展到普通平坦空间。我们采取的方法是考虑度量涨落的实验特征是否可以决定平坦空间中量子引力真空的性质。特别是,我们提出了一个由 AdS/CFT 计算激发的理论模型,该模型重现了模哈密顿涨落的最重要特征;该模型由高占据数玻色子自由度组成。我们表明,如果该理论通过普通的引力耦合与干涉仪中的镜子耦合,且其应变灵敏度与引力波的灵敏度相似,则可以观察到真空涨落。
受监控的量子电路可以实现前所未有的多体纠缠动态控制。在这里,我们展示了随机的、仅测量的电路,实现了 Kitaev 蜂窝模型的键和斑块耦合的竞争,产生了具有次级 L ln L 液体缩放行为的结构化体积定律纠缠相。这种相互作用的马约拉纳液体在改变相对耦合概率时获得的纠缠相图中占据高度对称的球形参数空间。球体本身是一个临界边界,量子 Lifshitz 缩放将体积定律相与近似面积定律相、颜色代码或环面代码区分开来。一个例外是一组三临界自对偶点,它们表现出有效的 (1 + 1)d 共形缩放,体积定律相和两个面积定律相在此相交。从量子信息的角度来看,我们的结果定义了在存在投影误差和随机综合征测量的情况下颜色代码的误差阈值。
我们发现标量量子电动力学中真空态子区域的纠缠熵以扰动方式作用于双环水平。这样做使我们推导出圆锥欧几里得空间中的麦克斯韦-普罗卡传播子。正如预期的那样,纠缠熵的面积定律在理论的质量和无质量极限中都得到了恢复。这些结果产生了纠缠熵的重正化群流,我们发现环贡献抑制了纠缠熵。我们根据标量量子电动力学中增加的耦合和相关器的重正化群流来强调这些结果,从而讨论了时空两点之间相关性的增加与时空两区域之间纠缠熵的减少之间的潜在张力。我们确实表明,在标量量子电动力学中,时空子区域的真空会随着能量而净化,这与屏蔽概念有关。
以各种形式伪装的相关性是经典和量子系统中一系列重要现象的基础,例如信息和能量交换。量子互信息和相关矩阵的范数都被视为总相关性的适当度量。我们证明,当应用于同一系统时,这两个度量实际上可以表现出明显不同的行为,至少在两种极端情况下除外:当没有相关性时和当存在最大量子纠缠时。我们通过提供相互作用的二分系统度量的时间导数的解析公式来进一步量化差异。我们认为,要正确解释相关性,应该考虑相关矩阵(以及子系统的简化状态)提供的全部信息。标量(例如相关矩阵的范数或量子互信息)只能捕捉相关性复杂特征的一部分。作为一个具体的例子,我们表明在描述与相关性相关的热交换时,这两个量都不能完全捕捉潜在的物理特性。作为副产品,我们还证明了具有局部和短程相互作用的系统中量子互信息的面积定律,而无需假设马尔可夫性或最终热平衡。
1 简介:二次量子化、相互作用电子、哈伯德模型及其派生模型 1 横向磁场中的量子伊辛模型:通过 Jordan 1 Wigner、Fourier 和 Bogoliubov 变换的精确解。量子相变和临界性。有序与无序。对偶性。激发和畴壁。 1 纠缠熵:面积定律和对数发散。 3 半整数自旋链:海森堡反铁磁体、Lieb-Schultz-Mattis 1 定理、有序与无序、Goldstone 玻色子、Mermin-Wagner 定理、通过坐标 Bethe 假设的精确解。 4 整数自旋链:Haldane 猜想、Affleck-Kennedy-Tasaki-Lieb 模型、MPS(矩阵积态)和张量网络简介。无间隙边缘模式和对称保护拓扑序。 5 自由费米子系统的拓扑分类:拓扑绝缘体和超导体的周期表,Su-Schriefer-Heeger模型和Kitaev的量子线:拓扑简并和马约拉纳边缘模式。 6 高维自旋模型,自旋液体,规范理论和Kitaev的环面代码模型,拓扑序和任意子 还将有一个小组项目,可以选择为文献综述(例如量子霍尔效应,Levin-Wen弦网络模型,拓扑绝缘体,
能量幺正动力学驱使量子多体系统进入高度纠缠态,其特征是子系统纠缠熵的体积定律缩放。当这种动力学被快速局部测量所拦截时,各个量子轨迹预计会坍缩为低纠缠态,其特征是子系统纠缠熵的面积定律缩放。最近发现,至少在一类模型中,这两个阶段由一个有限测量速率 1 – 3 的尺度不变的“临界点”分隔。近期,人们对这种转变及其概括的几个方面进行了研究 4 – 19 。在无限快速局部测量的极限下,系统的状态关键取决于测量基的选择。假设只测量交换的单量子比特算子,波函数就会坍缩为无纠缠的平凡积态。然而,如果选择测量一组稳定拓扑或对称保护拓扑 (SPT) 波函数的稳定算子,那么得到的状态——尽管也具有纠缠面积律标度——在拓扑上将不同于乘积状态 20 , 21 。在本文中,我们考虑这两类测量之间的竞争,以及它们与幺正动力学的竞争。这就引发了一个问题,即拓扑相的概念是否在包含幺正动力学和局部测量的随机量子电路中得到很好的定义。为了回答这个问题,我们考虑一个 (1 + 1)D 量子电路模型,它包含三个元素:(1) 稳定 Z 2 ´ Z 2 的稳定算子的测量
变分量子算法 (VQA) 经典地优化参数化量子电路以解决计算任务,有望增进我们对量子多体系统的理解,并使用近期量子计算机改进机器学习算法。这类量子-经典混合算法面临的突出挑战是与其经典优化相关的量子纠缠和量子梯度的控制。这些量子梯度被称为贫瘠高原现象,在体积定律纠缠增长的情况下,它们可能会迅速消失,这对 VQA 的实际应用构成了严重障碍。受最近对随机电路中测量诱导纠缠转变研究的启发,我们研究了具有中间投影测量的变分量子电路中的纠缠转变。考虑 XXZ 模型的哈密顿变分拟定 (HVA) 和硬件高效拟定 (HEA),我们观察到随着测量率的增加,测量诱导的纠缠转变从体积定律到面积定律。此外,我们提供了证据表明,该转变属于随机酉电路的同一普适性类别。重要的是,该转变与经典优化中从严重到温和/无贫瘠高原的“景观转变”相吻合。我们的工作可能为通过在当前可用的量子硬件中结合中间测量协议来提高量子电路的可训练性提供一条途径。
我们讨论了在二维 (2D) 大 N c 规范理论中,在光前沿量化狄拉克夸克,快自由度和慢自由度之间的量子纠缠。利用 ' t Hooft 波函数,我们为动量分数 x 空间中的某个间隔构建了约化密度矩阵,并根据结构函数计算其冯诺依曼熵,该结构函数由介子(一般为强子)上的深非弹性散射测量。我们发现熵受面积定律的约束,具有对数发散,与介子的速度成正比。纠缠熵随速度的演化由累积单重态部分子分布函数 (PDF) 确定,并从上方以 Kolmogorov-Sinai 熵 1 为界。在低 x 时,纠缠表现出渐近展开,类似于 Regge 极限中的前向介子-介子散射振幅。部分子 x 中每单位快速度的纠缠熵的演化测量了介子单重态 PDF。沿单个介子 Regge 轨迹重合的纠缠熵呈弦状。我们认为,将其扩展到多介子状态可模拟大型 2D“原子核”上的深度非弹性散射。结果是纠缠熵随快速度的变化率很大,这与当前最大量子信息流的 Bekenstein-Bremermann 边界相匹配。这种机制可能是当前重离子对撞机中报告的大量熵沉积和快速热化的起源,并且可能扩展到未来的电子离子对撞机。