Loading...
机构名称:
¥ 1.0

我们讨论了在二维 (2D) 大 N c 规范理论中,在光前沿量化狄拉克夸克,快自由度和慢自由度之间的量子纠缠。利用 ' t Hooft 波函数,我们为动量分数 x 空间中的某个间隔构建了约化密度矩阵,并根据结构函数计算其冯诺依曼熵,该结构函数由介子(一般为强子)上的深非弹性散射测量。我们发现熵受面积定律的约束,具有对数发散,与介子的速度成正比。纠缠熵随速度的演化由累积单重态部分子分布函数 (PDF) 确定,并从上方以 Kolmogorov-Sinai 熵 1 为界。在低 x 时,纠缠表现出渐近展开,类似于 Regge 极限中的前向介子-介子散射振幅。部分子 x 中每单位快速度的纠缠熵的演化测量了介子单重态 PDF。沿单个介子 Regge 轨迹重合的纠缠熵呈弦状。我们认为,将其扩展到多介子状态可模拟大型 2D“原子核”上的深度非弹性散射。结果是纠缠熵随快速度的变化率很大,这与当前最大量子信息流的 Bekenstein-Bremermann 边界相匹配。这种机制可能是当前重离子对撞机中报告的大量熵沉积和快速热化的起源,并且可能扩展到未来的电子离子对撞机。

二维 QCD 中的纠缠熵和流

二维 QCD 中的纠缠熵和流PDF文件第1页

二维 QCD 中的纠缠熵和流PDF文件第2页

二维 QCD 中的纠缠熵和流PDF文件第3页

二维 QCD 中的纠缠熵和流PDF文件第4页

二维 QCD 中的纠缠熵和流PDF文件第5页