Loading...
机构名称:
¥ 1.0

纠缠是量子力学的定义特征之一,也是许多量子信息协议的基本资源 [1]。许多理论和实验研究都致力于研究一对二能级系统(量子比特)的纠缠。高维(量子比特)系统的二分纠缠研究较少。然而,从根本上讲,更好地理解纠缠量子比特可以澄清量子物理的一些微妙之处。例如,与量子比特相比,量子比特被证明可以增强非经典效应,因为它们允许更强的局部现实主义违反 [2, 3]。此外,从更务实的角度来看,高维量子态比简单量子比特具有更高的信息容量,并允许量子密钥分发协议容忍更高的噪声阈值 [4]。在光子系统中,(纠缠)量子比特被编码在高维(最终是无限维)希尔伯特空间的有限维子空间中。这可以通过使用空间模式(例如轨道角动量 [5, 6, 7])或离散化连续自由度(例如频率 [8, 9] 或时间 [10, 11])来实现。此外,这种最初有限维的状态可以在其动态演化过程中扩展到整个希尔伯特空间。例如,当光子轨道角动量携带状态 [12] 通过自由空间 [13, 14, 15, 16] 或光纤 [17] 传输时,就是这种情况。然而,输出状态通常被投射到

截断量子态的纠缠

截断量子态的纠缠PDF文件第1页

截断量子态的纠缠PDF文件第2页

截断量子态的纠缠PDF文件第3页

截断量子态的纠缠PDF文件第4页

截断量子态的纠缠PDF文件第5页