通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度进一步缩小,从而缩小了接触多晶硅间距 (CPP)。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电性能的新结构(例如插入氧化物鳍式场效应晶体管 (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
• 超过 100 年的历史 • 2 亿欧元的营业额 • 生产面积:45000 平方米库存面积:8,000 平方米。• 4 条生产线 • 全球超过 1000 名员工 • 年不锈钢消耗量超过 5,000 吨。
跑道长度(英尺): • 12R-30L 10,200 11,000 11,000 • 12L-30R 4,400 11,000 11,000 • 11-29 ** 4,600 -- -- 航空公司登机口 31 36 42 *** 航站楼(平方英尺) 408,000 1,080,000 1,800,000 停车场(停车位): • 公共 7,300 6,600 12,700 *** • 员工 1,200 1,500 3,700 • 租赁汽车准备/归还 700 2,000 2,000 航空燃油储存量(加仑) 208,000 2,000,000 4,000,000 全货舱面积(平方英尺) 300,000 300,000 468,100 腹舱货舱面积(平方英尺) 85,000 85,000 116,400 通用航空面积(英亩)** 82 79 88
2021 年 3 月生效的《雨水管理规则》修正案要求主要开发项目通过使用绿色基础设施满足地下水补给、雨水径流质量和数量标准。对于地下水补给和雨水径流质量要求,这些绿色基础设施系统必须满足 NJAC 7:8-5.3(b) 中任何适用的排水面积限制。这些限制是: 最佳管理实践 最大贡献排水面积 1. 干井 1 英亩 2. 制造的处理设备 2.5 英亩 3. 透水铺装系统 额外流入面积不能超过 BMP 所占面积的三倍 ______________________________________________ 4. 小型生物滞留系统 2.5 英亩 5. 小型渗透盆地 2.5 英亩 6. 小型沙过滤器 2.5 英亩 因此,如果打算使用上面列出的任何 BMP 来遵守地下水补给或雨水径流质量标准,则这些 BMP 的设计都需要满足适用的排水面积限制。虽然仍然必须使用绿色基础设施来满足雨水径流量标准,但仅用于雨水径流量标准的 BMP 不需要满足贡献排水面积限制。 什么是绿色基础设施?绿色基础设施是雨水管理领域中一种成熟的雨水管理技术,被美国环境保护署 (USEPA) 和全国各地的城市视为一种有效的雨水管理策略。具体来说,在新泽西州,NJAC 7:8-1.2 中的雨水管理规则将绿色基础设施定义为“一种雨水管理措施,通过以下方式在雨水源附近管理雨水:
计划建设多少套经济适用房/可负担住房(或占开发计划的百分比)。根据当前地区平均收入数据确定这些住房的目标收入。住宅密度:如果是多户住宅,请注明计划的住宅密度。住宅建筑面积:请注明供暖和制冷区域下居住面积的最小平方英尺数。总面积:请注明总面积,包括净面积和毛面积。非住宅面积:请注明净面积。(POA 地块、保护区等)县级设施面积:请注明净面积(通行权、池塘地块、抽水站地块)
摘要 — 单片 3D 集成已成为满足未来计算需求的有前途的解决方案。金属层间通孔 (MIV) 在单片 3D 集成中形成基板层之间的互连。尽管 MIV 尺寸很小,但面积开销可能成为高效 M3D 集成的主要限制,因此需要加以解决。以前的研究集中于利用 MIV 周围的基板面积来显着降低该面积开销,但却遭受了泄漏和缩放因子增加的影响。在本文中,我们讨论了 MIV 晶体管的实现,它解决了泄漏和缩放问题,并且与以前的研究相比,面积开销也有类似的减少,因此可以有效利用。我们的模拟结果表明,与之前的实现相比,所提出的 MIV 晶体管的漏电流 (ID,leak) 减少了 14 K ×,最大电流 (ID,max) 增加了 58%。此外,使用我们提出的 MIV 晶体管实现的逆变器的性能指标,特别是延迟、斜率和功耗降低了 11.6%,17.与之前的实现相比,在相同的 MIV 面积开销减少的情况下,分别降低了 9% 和 4.5%。索引术语 — 单片 3D IC、垂直集成、片上器件
摘要 — 单片 3D 集成已成为满足未来计算需求的有前途的解决方案。金属层间通孔 (MIV) 在单片 3D 集成中形成基板层之间的互连。尽管 MIV 尺寸很小,但面积开销可能成为高效 M3D 集成的主要限制因素,因此需要加以解决。以前的研究主要集中在利用 MIV 周围的基板面积来显着降低该面积开销,但却遭受了泄漏和缩放因子增加的影响。在本文中,我们讨论了 MIV 晶体管的实现,它解决了泄漏和缩放问题,并且与以前的研究相比,面积开销也有类似的减少,因此可以有效利用。我们的模拟结果表明,与之前的实现相比,对于所提出的 MIV 晶体管,漏电流 (ID,leak) 减少了 14 K ×,最大电流 (ID,max) 增加了 58%。此外,使用我们提出的 MIV 晶体管实现的逆变器的性能指标,特别是延迟、斜率和功耗降低了 11.6%,17.与之前的实现相比,在相同的 MIV 面积开销减少的情况下,分别降低了 4.9% 和 4.5%。索引术语 — 单片 3D IC、垂直集成、片上器件
微型超级电容器 (MSC) 作为微电子和微型便携式/可穿戴设备的有前途的电源而备受关注。然而,它们的实际应用受到制造复杂性和尺寸限制的阻碍。在这里,我们通过电流体动力学 (EHD) 喷射打印在芯片上开发了一类新型超高面积数密度固态 MSC (UHD SS-MSC)。据我们所知,这是第一项在 MSC 中利用 EHD 喷射打印的研究。活性炭基电极墨水采用 EHD 喷射打印,从而形成具有精细特征尺寸的交错电极。随后,引入免干燥、紫外线固化固态凝胶电解质以确保 SS-MSC 之间的电化学隔离,从而实现芯片上密集的 SS-MSC 集成和按需(串联/并联)电池连接。所得片上 UHD SS-MSC 表现出优异的面积数密度[芯片上集成 36 个单元格(面积 = 8.0 mm × 8.2 mm),54.9 个单元格 cm −2 ] 和面积工作电压(65.9 V cm −2 )。