在上一篇论文(Starkey&Barrett,1976a)中,描述了人脾脏对两个中性蛋白酶的纯化。这些酶之一是针对弹性蛋白的活性,因此被认为是一种弹性酶。本文中描述的证据表明,这是人类嗜中性粒细胞的溶酶体(Azurophil)颗粒的合并的弹性蛋白酶(Dewald等,1975)。There is much interest in the possibility that this enzyme may play a part in such important physio- logical processes as the digestion of bacteria by phagocytes (Janoff & Blondin, 1973), the degradation of elastin in the arterial wall and emphysematous lung, the degradation of kidney basement membrane in glomerulonephritis, and the destruction of the articular类风湿关节炎中的软骨(Janoff,1972a)。在本文中,我们描述了溶酶体弹性酶的某些特性,并将其与猪泛菌的特征弹性酶进行比较。
发现,工程和生产天然产品异构酶的专家与天然产品(有时被描述为次生代谢物),尤其是聚酮化合物和非核糖体肽,以及其他类别,以及其他类别,例如氨基糖苷,核糖体,核糖体合成和后经硅化后修饰的肽(Ripps)(Ripps)(Ripps),sterols和sterols和Terpens,terpers和Terpens。它们可以由多种细菌和真菌物种产生。异构酶在培养和生物工程方面擅长这些微生物。 我们帮助合作伙伴访问和使用稀有和难以供应的天然产品并生产菌株,生产天然产品的新型类似物并扩大生产。异构酶在培养和生物工程方面擅长这些微生物。我们帮助合作伙伴访问和使用稀有和难以供应的天然产品并生产菌株,生产天然产品的新型类似物并扩大生产。
图 4. 静电逆设计问题包括寻找反应周围带电残基或点电荷的最佳位置,以降低反应势垒。考虑围绕狄尔斯-阿尔德反应的分区球面,分区的每个斑块分配一个电荷密度(蓝色 - 带负电;红色 - 带正电),理论上可能的环境总数是无限的,因为任何一点的电荷都可以是任何实数值,并且分区可以无限精细。这产生了巨大的搜索空间。此外,由于静电环境的各种配置会产生类似的反应势垒,以及可能的解决方案完全改变反应途径,而这在蛋白质中不再可行,因此解决方案将不唯一。Hartke 和 Sokalski 试图通过使用机器学习或最小化给定反应的 𝐸 !"## 来确定最佳催化环境,从而减少这个搜索空间。
摘要:了解酶机制对于揭示复杂的生命分子机制至关重要。在这篇综述中,我们概述了计算酶学领域,重点介绍了控制酶机制的关键原理,并讨论了当前面临的挑战和有希望的进展。多年来,计算机模拟已成为酶机制研究中不可或缺的一部分,实验和计算探索的结合现已成为深入了解酶催化的整体方法。许多研究已经证明了计算机模拟在表征各种酶的反应途径、过渡态、底物选择性、产物分布和动态构象变化方面的强大功能。然而,在研究复杂的多步反应、大规模构象变化和变构调节的机制方面仍然存在重大挑战。除了机制研究之外,计算酶建模已成为计算机辅助酶设计和合理发现用于靶向治疗的共价药物的重要工具。总体而言,酶设计/工程和共价药物开发可以从我们对酶详细机制的理解中受益匪浅,例如计算研究揭示的蛋白质动力学、熵贡献和变构效应。预计这种不同研究方法的融合将继续下去,在酶研究中产生协同效应。本综述通过概述不断扩展的酶研究领域,旨在为未来的研究方向提供指导,并促进这一重要且不断发展的领域的新发展。■ 简介
键长AG1-C1 2.054(10)C1-K1和3,468(11)AG1-O1 2.070(11)K1-N1 IV 2.823(9)K1-N1 2.824(9)K1-N1(9)K1-N1和2.906和2.906(9)K2-N1 2.868(8)2.868(8)O1-H1 0.84(10)和1 N.84(10)和1.2.054(10) 2,906(9)AG1-O1-OII 2.070(11)K1-N1 V 2.823(9)键角N1-C1-AG1 175.6(10)N1 VII-K1-K1-K2 42.05(16)N1-C1-C1-K1-K2 51.K2 51.8(6)N1 I -K1 I -K1-K1-K1-K2 89。-k1-ag1-k1-K1-K1-K1-K1-K1-K2 125.0-K2 125.0-K2 125.0( 94.4(2)N1-C1-K1和51.7(7)C1 VII -K1-K2 51.32(17)AG1-C1-K1和126.0和126.0(4)C1 VI -K1-K1-K2 119.9(2) 83.8(2)C1 II -AG1-O1 110.5(3)N1 XII -K2-N1 96.2(2)O1-AG1-O1 III 116.2(11)C1-K2-K1 K1 XI。 139.0(9)N1 IV -K1-N1 V 98.4(2)C1-N1-K2 110.1(8)N1 IV -K1-N1 VI 83.9(3)K1-N1-K1 I 96.3(2)N1-K1-K1-K1-C1和98.8(3)K2-N1-K1和98.8(3)K2-N1-K1和95.2(3)n5.2(3)vi.1 v-1 v-k1(3)
4 5 6 1 D e partme n t o f C he mic a l and Bi o lo g ic a l E ng i nee ri ng , N o rt h w e st e r n U n iv e rsity, 21 4 5 7 Sh e ri da n Road , T e c hno l og ic a l I n stit u t e E 136 , Ev an st on , I L , 60208 , USA 8 9 2 Interdiscipli na ry Bi o l og ic a l Sci ence s Gr adua t e Pr og r a m, N o rt h w e st e r n U n iv e rsity, 2205 10 Tech Drive, 2 - 100 H ogan H a ll, Eva n st on , I L , 60208 , USA 11 12 3 C e nter for Sy n t he tic Bi o l og y, N o rt h w e st e r n U n iv e rsity, 2145 S he ri dan R oad , 13 Technologic a l I n stit u t e B 486 , Ev an st on , I L , 60208 , USA 14 15 4 These aut ho rs c on tri bu t ed equa ll y t o t he w o rk 16 17 Autho r Em a il Add resses : 18 19 C h arl o tt e H A b r aha ms on : c ab r aha ms on@u .no rt h w e st e r n。edu 20 21 brett j pal me r o:b r e tt pa lm e r o2025 @ u。no rt h w e st e r n。edu 22 23 n o l an w k enned y:no l an k enned y2 019@u。no rt h w e st e r n。edu 24
在某些非生理条件下,在生物技术过程中使用酶的一般局限性是两个关键量,酶活性和稳定性之间的复杂相互作用,其中一种的增加通常与另一个关键的减少有关。确切的稳定性交易是为了使酶具有完全功能,但是其不同的蛋白质区域的重量及其对环境条件的依赖性尚未阐明。为了促进此问题,我们使用了我们最近开发的形式主义来有效地识别蛋白质结构中的稳定性和弱点区域,并将其应用于具有已知的实验结构和催化位点的大型球状酶。我们的分析表明,以催化区为中心的自由能补偿的惊人振荡模式。的确,相对于稳定性,催化残基通常不是最佳的,但是催化位点周围第一个壳的残基平均是稳定性强度,因此对于这种缺乏稳定性而言。第二壳中的残留物再次较弱,依此类推。在所有酶家族中,这种趋势都是一致的。它伴随着类似但不太明显的残留物保守模式,跨进化。此外,我们分别分析了冷和热适应的酶,并强调了稳定强度和劣势的不同模式,这些模式可洞悉催化速率在冷环境中的长期概率。通过深诱变扫描获得的我们的稳定性和保护结果与实验性数据的成功比较,使我们提出了改善催化活性的标准,同时保持酶稳定性,这是酶设计的关键目标。
金黄色葡萄球菌中的染色体突变和靶基因缺失和失活通常使用等位基因交换方法产生。然而,近年来,已经开发出更快速的方法,通常使用基于 CRISPR - Cas9 的系统。在这里,我们描述了最近开发的用于金黄色葡萄球菌的基于 CRISPR - Cas9 的质粒系统,并讨论了它们在靶基因突变和失活中的用途。首先,我们描述如何将 CRISPR - Cas9 反选择策略与重组工程策略相结合以在金黄色葡萄球菌中产生基因缺失。然后我们引入死 Cas9 (dCas9) 和 Cas9 切口酶 (nCas9) 酶,并讨论如何使用与不同核苷脱氨酶融合的 nCas9 酶在靶基因中引入特定的碱基变化。然后,我们讨论如何通过引入提前终止密码子或突变起始密码子,使用 nCas9-脱氨酶融合酶来实现靶向基因失活。这些工具共同凸显了基于 CRISPR - Cas9 的方法在金黄色葡萄球菌基因组编辑中的强大功能和潜力。
酪氨酸酶是人体内控制黑色素生成的限速酶,黑色素生成过量可导致多种皮肤病。本文利用光谱、分子对接、抗氧化分析和色谱分析等方法研究了根皮素对酪氨酸酶的抑制动力学及其结合机制。光谱结果表明根皮素通过多相动力学过程以混合型方式可逆地抑制酪氨酸酶,其IC 50 为169.36 m mol/L。结果表明根皮素对酪氨酸酶固有荧光有较强的猝灭能力,主要通过静态猝灭过程,表明形成了稳定的根皮素-酪氨酸酶复合物。分子对接结果表明根皮素的主要构象与酪氨酸酶活性位点的门户结合。此外,抗氧化试验表明,根皮素具有强大的抗氧化能力,能够像抗坏血酸一样将 o-多巴醌还原为 L-多巴。有趣的是,光谱和色谱分析结果表明,根皮素是酪氨酸酶的底物,但也是抑制剂。提出了可能的抑制机制,这将有助于设计和寻找酪氨酸酶抑制剂。© 2019 由 Elsevier BV 出版