这是经过同行评审的、已接受作者手稿的以下研究文章:Sheil, BB、Suryasentana, SK、Templeman, JO、Phillips, BM、Cheng, WC 和 Zhang, L. (2022)。使用贝叶斯更新方法预测顶管力。岩土工程与土工环境工程杂志,148(1),[04021173]。https://doi.org/10.1061/(ASCE)GT.1943-5606.0002645
二维(2D)结构由具有高载体迁移率的原子薄材料组成的二维(2D)结构已被研究为未来晶体管1-4的候选。然而,由于合适的高质量介电的不可用,尽管具有优越的物理和电气特性,但2D现场效应晶体管(FET)仍无法获得全部理论潜力和优势。在这里,我们证明了原子上薄的单晶Al 2 O 3(C-al 2 O 3)作为2D FET中的高质量顶栅介电。通过使用插入式氧化技术,在室温下,在单晶Al表面形成了稳定,化学计量和原子较薄的C-Al 2 O 3层,厚度为1.25 nm。由于有利的晶体结构和明确定义的接口,栅极泄漏电流,界面状态密度和C-AL 2 O 3的介电强度3符合国际路线图3,5,7的国际路线图3,5,7。通过由源,排水,电介质材料和门组成的一步转移过程,我们实现了顶部的MOS 2 FET,其特征是以61 mV的陡峭亚阈值摇摆为61 mV-1-1-1,高/OFF电流比为10 8,并且非常小的滞后率为10 mV。这种技术和材料证明了产生适合整合到完全可扩展的晚期2D FET的高质量单晶氧化物的可能性,包括负电容晶体管和自旋晶体管。
* 连续集电极电流由最高结温限制 *Collector current limited by maximum junction temperature
* 连续集电极电流由最高结温限制 *Collector current limited by maximum junction temperature
Andrei Vankov是Senko Advanced组件的应用工程师。他从托马斯·爱迪生州立大学(Thomas Edison State College)和宾夕法尼亚州立大学的MSEE获得了学士学位。他的职业生涯始于1993年的Sumitomo Electric Lightwave Corp,当时是一名光纤制造工程师,他在日本横滨使用Kaizen Methods从事活跃和被动组件的工作。作为马萨诸塞州富兰克林的高级光学设计工程师(成立为Advanced Inter Connect)Andrei Vankov开发了各种被动的光学组件和包装集成,以符合Telcordia行业标准。设计了光学互连,包括光学背平(MTP,HBMT,PhD,OGI)和用于高清应用程序的光纤SMPTE兼容广播连接器。在2013 - 2020年,安德烈(Andrei)在诺基亚分区射频系统(RFS)工作,在那里他为LTE RAN发射项目团队提供了领导地位。Andrei拥有光纤互连技术的美国和欧洲几项专利。Andrei拥有光纤互连技术的美国和欧洲几项专利。
有几种方法可以定义结到外壳的热阻;然而,用一个数字准确且可重复地描述封装中的热流是相当具有挑战性的。对于许多功率封装系列(如 TO 型封装),热瞬态测试和所谓的双界面方法可以提供可靠的结果。双热瞬态的结构函数分歧点可以很好地描述此类结构中的材料界面。然而,分歧点的位置和性质在很大程度上取决于热扩散的形状和方向。如果封装面积远大于散热芯片,则使用不同的界面时热流的形状会发生变化 [1,2]。这导致与两种设置相对应的结构函数在到达外壳表面之前就有很大偏差。本文探讨了这种现象的起源。对不同的大型 IGBT 模块进行了测量和模拟结果比较,对其结构进行了多项修改,从而可以详细分析热流路径。对只加热大模块的一小部分和加热所有芯片进行了比较。一些样品经过了热循环可靠性测试,导致芯片下方出现裂纹。借助结构函数,可以直观地看到减少芯片贴装面积的影响。
结直肠癌表现出明显的转移率和倾向,但是当前的转移性结直肠癌的治疗干预措施产生了不错的结果。ICI可以通过防止肿瘤的免疫逃避来减少肿瘤的发育,从而为癌症患者提供新的治疗方法。CRC中免疫检查点抑制剂(ICI)的使用增加带来了几个问题。特别是ICI在MSI-H CRC患者中表现出显着的临床有效性,而其效率在MSS中受到限制。对ICI的阳性反应的患者仍然可以发生抗药性。本文介绍了CRC临床治疗中ICI的效率,讨论了获得获得的抗药性发生的机制,主要与肿瘤抗原的损失和表现受损有关,IFN-L和IFN-L和细胞因子或代谢失调的反应降低,并汇总了不良影响的发病率。我们认为,ICIS的未来取决于精确预测生物标志物的进步和联合疗法的实施。本研究旨在阐明与CRC和寄养目标解决方法的ICI相关的约束,从而增强对更多患者的潜在受益。
摘要 结直肠癌 (CRC) 是全球第三大最常见的癌症,也是第二大致命癌症类型。在晚期诊断中,CRC 可以抵抗与癌症干细胞 (CSC) 密切相关的治疗方案。CSC 是肿瘤细胞的一个亚群,负责肿瘤的起始和维持、转移和对常规治疗的耐药性。在这种情况下,结直肠癌干细胞 (CCSC) 被认为是治疗失败和耐药性的重要关键。反过来,线粒体是一种参与癌症许多机制的细胞器,包括由于线粒体代谢、细胞凋亡、动力学和线粒体自噬的改变而导致的细胞毒性药物化学耐药性。因此,了解 CCSC 中线粒体在 CRC 耐药性方面的作用至关重要。研究表明,增强抗凋亡蛋白表达、线粒体自噬率和对氧化磷酸化的依赖是 CCSC 为避免药物损伤而开发的主要策略。因此,必须探索新的针对线粒体的药物方法,通过消融 CCSC 来减轻 CRC 化学耐药性。
我是一位结直肠外科医生,热衷于通过利用我在机器人手术和研究方面的专业知识来改善炎症性肠病(IBD)的生活。我的旅程反映了我对创新的承诺。我在2018年在圣马克(St Mark's)完成了博士学位,研究重点是提高我们对IBD患者瘘管疾病的理解。这个学术基金会推动了我对进一步的专业知识的追求,将我于2022年前往巴塞罗那参加专门的机器人研究金。今天,我将这种独特的研究和外科手术经验融为一体,为患者提供了IBD的尖端机器人手术的机会。