创伤性脑损伤(TBI)是指由外力造成的脑损伤,典型的影响很大,通常是由于汽车事故,跌倒或运动损伤等事件造成的。在2019年全球记录了超过2700万例新的TBI病例,这种类型的伤害很常见,可能会威胁生命[1]。尽管在影响时发生了主要伤害,但TBI患者面临着次要损伤的巨大风险,在初次创伤后的几个小时甚至几天内,这种损伤可能会逐渐发展[2]。这些次要侮辱与颅内压增加(ICP)有关,这是颅库内压力的危险增加。当ICP增加时,可以限制脑血流。这种限制可能导致脑缺血,其中大脑被剥夺了氧气,这是ICP升高的主要伤害作用。紧急医疗干预需要管理和减少ICP,因为ICP的未经治疗的海拔高程会导致永久性神经系统损害,昏迷甚至死亡。预防和管理次要损伤对于对TBI患者的治疗至关重要,并且通常涉及对ICP的持续监测,稳定患者的状况以及采用干预措施,例如药物,手术减压或脑脊髓液流体,以最大程度地损害进一步的损害。迅速治疗升高的ICP可以显着提高预后,并降低长期残疾的可能性[3,4]。
7.1. 本地................................................................................................................................................ 28
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。
7.1. 本地................................................................................................................................................25
阿纳塔普尔联合大学附属拉吉夫·甘地纪念工程技术学院(自治)。获得 NBA (TIER-I) 和 NAAC of UGC 认证。新德里,获得 A+ 级认可 UGC-DDU KAUSHAL KENDRA NANDYAL-51850 1,(Estd-1995)
半导体材料为量子技术 (QT) 提供了一个引人注目的平台。然而,在众多候选材料中识别出有前途的材料主体是一项重大挑战。因此,我们开发了一个框架,使用材料信息学和机器学习方法自动发现用于 QT 的半导体平台。我们实施了不同的方法来标记数据,以训练监督机器学习 (ML) 算法逻辑回归、决策树、随机森林和梯度提升。我们发现,完全依赖文献研究结果的经验方法会明显区分预测的合适和不合适的候选材料。与文献中将带隙和离子特性作为 QT 兼容性的重要特性的预期相反,ML 方法强调了与对称性和晶体结构相关的特征,包括键长、方向和径向分布,因为这些特征在预测材料是否适合 QT 时很重要。
这项研究介绍了一个先进的预测分析框架,用于早期发现糖尿病风险,旨在通过整合复杂的机器学习算法来增强主动的健康监测。该模型经过精心训练,以各种患者的健康指标,包括人口统计和临床变量,例如年龄,体重指数,血压和葡萄糖水平。通过确定数据中的微妙模式和相关性,该模型促进了对患有糖尿病高风险的个体的早期识别。这种早期检测能力可以及时进行临床干预,有可能减轻疾病的进展并优化患者管理策略。该研究强调了该模型的鲁棒性和可扩展性,突出了其在临床环境中部署的重要潜力,这是预防医疗基础设施的关键组成部分。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
