Khristina Maksudovna Vafaeva 1,2 , Denis Fedorovich Karpov 3 , Mikhail Vasilyevich Pavlov 4 , Namani Srinivas 5 , Wamika Goyal 6 , Gaurav Singh Negi 7 , Sakshi Sobti 8 , Rajireddy Soujnya 9 , Deepak Kumar Tiwari 10 1 Research Engineer, Peter the Great俄罗斯圣彼得堡的圣彼得堡理工学院2号研究与发展部,可爱的专业大学,Phagwara,Punjab,旁遮普邦,印度3热,天然气和供水系,Vologda州立大学,Vologda,Vologda,Vologda,Vologda,Heat,Gas and Water Supply Supply Suppliate Suppliant,Vologda State University,Vologda,Vologda,Vologda,Vologda Federation 5 Chilkur(VIL),Moinabad(M),Ranga Reddy(Dist),Hyderabad,500075,印度Telangana,印度。6 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India 7 Uttaranchal University, Dehradun - 248007, India 8 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh-174103 India 9 Department of CSE, GRIET, Bachupally, Hyderabad, Telangana, India.10,Mathura-281406 GLA大学土木工程系(U.P. ) ),印度对应的电子邮件:vafaeva.khm@gmail.com10,Mathura-281406 GLA大学土木工程系(U.P.),印度对应的电子邮件:vafaeva.khm@gmail.com
电解质在锂电池的正极和负电极之间进行离子,这是锂离子电池的保证,以获得高压和高能量密度的优势,因此电解质的低粘度可以使锂离子的移动。如果粘度高,它将形成一定的内部电阻,从而防止锂离子的运动。温度低时,电池会预热,因此电池内电解质的粘度随温度的变化而上升,从而提高了电池的充电和放电性能。因此,为了满足车辆的电源需求,有必要预热电池。但是,当温度低于25度以下时,锂电子将被冷冻,导致未能启动汽车。在这种情况下,车辆将事先为电池充电,以延长充电时间,并保证巡航范围。
在 OMEGA 激光系统上进行的综合磁化衬套惯性聚变 (MagLIF) 实验旨在研究激光预热对内爆性能的影响。在模拟和实验中,用激光预热燃料都会提高中子产量,最大产量发生在最佳预热激光能量下。将预热能量增加到超过最佳值会降低中子产量。在模拟中,中子产量下降的速度取决于是否纳入能斯特效应。在 OMEGA 上的 MagLIF 预热阶段,能斯特效应会将磁场从燃料区域中心移出,并削弱磁通压缩。如果不包括能斯特效应,则模拟的超过最佳预热激光能量的产量下降将更加平缓,而不是实验中看到的急剧下降。模拟能够模拟实验中看到的测量离子温度的趋势。混合模型表明,在模拟燃料区域中加入来自壁面的混合会进一步降低产量并降低最佳预热激光能量。混合模拟预测,增加初始轴向磁场仍可能提高集成内爆的产量性能。
使用直接的数值模拟统计平面的湍流过滤量,分析了应变速率张量和热功能的耗散速率的成分的统计行为。HESSIAN的压力贡献以及组合的分子扩散和耗散项被发现在对角应变率成分的传输方程中起主要作用,并且具有小karlovitz数量的峰值动能的热能能量耗散速率。相比之下,领先顺序平衡在应变速率,涡度和分子耗散贡献之间保持较大的卡洛维茨数量,类似于非反应的湍流。与分子耗散贡献的幅度相比,压力和密度梯度之间的相关性以及压力梯度之间的相关性和压力HESSIAN在应变速率和耗散速率上弱化,而Karlovitz数量增加。这些行为已经用涡度,压力梯度和与应变率特征的压力HESSIAN特征向量的对齐方式进行了解释。还发现,在较高的karlovitz数字的增加时,还发现术语术语中的术语大小会增加,这是随着karlovitz数量的增加而增加的,这在详细的扩展分析的帮助下进行了解释。此扩展分析还解释了不同燃烧方案动能耗散率的主要顺序贡献。
摘要:热机械特性高度依赖于定向能量沉积 (DED) 工艺的沉积策略,包括沉积路径、道间时间、沉积体积等,以及基材的预热条件。本文旨在通过有限元分析 (FEA) 研究沉积策略和预热温度对采用 DED 工艺沉积在 AISI 1045 基材上的 Inconel 718 高温合金热机械特性的影响。针对不同的沉积策略和预热温度建立了 FE 模型来研究热机械行为。采用 16 种沉积策略进行 FEA。通过比较实验和 FEA 的温度历史来估算热沉系数,以获得合适的 FE 模型。研究了沉积策略对设计的小体积沉积模型中残余应力分布的影响,以确定可行的沉积策略。此外,还研究了沉积策略和预热温度对大体积沉积设计部件残余应力分布的影响,以预测合适的DED头沉积策略和合适的基体预热温度。
© 2019 Vertiv Co. 保留所有权利。Vertiv 和 Vertiv 徽标是 Vertiv Co. 的商标或注册商标。提及的所有其他名称和徽标均为其各自所有者的商品名、商标或注册商标。尽管已采取一切预防措施确保本文的准确性和完整性,但 Vertiv Co. 对因使用此信息或任何错误或遗漏而造成的损害不承担任何责任。规格如有变更,恕不另行通知。
额定稳定温度为1000°C,而不是使用高压塞实现的900°C。即使在低电池电压条件下,也可以保证预热。驾驶过程中电池电压下降得到补偿。在高压系统中,由于起动器吸收的电流,电池电压大幅下降,从而阻止插头达到其正确的工作温度。当额定的插头电压为4.4 V时,这不会发生。弥补了由发动机旋转的通风引起的发光插头冷却。这是通过调节有效的施加电压来进行的。根据发动机和气候条件调节插头提供的热量。更快的预热。在恒温下进行加热。预热控制单元具有用于诊断的智能系统,该系统允许单个发光插头可能被短路或中断被识别,从而减少了保修成本和维护时间。