摘要 尽管在可解释人工智能技术中注入领域知识是增强“黑箱”模型决策可解释性的可行方法,但仍存在一些未解决的挑战。其中一些挑战包括可解释性的量化、性能妥协和信息牺牲。在我们之前的工作中,我们证明了在网络入侵检测中注入领域知识可以提供更好的决策可解释性、更好的泛化以更好地处理未知攻击以及更快的决策或响应。在本文中,我们扩展了我们之前的工作,以量化引入泛化的信息牺牲水平,并量化应用于网络入侵检测问题的可解释人工智能技术的可解释水平。我们的实验结果表明,由于注入了领域知识,牺牲的信息水平可以忽略不计,并且使用最近提出的代理方法获得的可解释性分数比不使用领域知识的情况要好。
摘要 — 作为第五代和第六代 (6G) 移动通信网络中的关键通信场景之一,超可靠和低延迟通信 (URLLC) 将成为各种新兴任务关键型应用程序开发的核心。最先进的移动通信系统无法满足 URLLC 的端到端延迟和整体可靠性要求。特别是,缺乏一个考虑到延迟、可靠性、可用性、可扩展性和不确定性决策的整体框架。在深度神经网络最新突破的推动下,深度学习算法被认为是开发未来 6G 网络中 URLLC 支持技术的有前途的方法。本教程说明了如何将通信和网络领域的知识(模型、分析工具和优化框架)集成到不同类型的 URLLC 深度学习算法中。我们首先介绍一下 URLLC 的背景,并回顾一下 6G 有前景的网络架构和深度学习框架。为了更好地说明如何利用领域知识改进学习算法,我们重新审视了基于模型的 URLLC 分析工具和跨层优化框架。随后,我们研究了在 URLLC 中应用监督/无监督深度学习和深度强化学习的潜力,并总结了相关的未解决的问题。最后,我们提供模拟和实验结果来验证不同学习算法的有效性并讨论未来的方向。
可解释人工智能 (XAI) 是一个快速发展的领域,旨在创建能够为其决策过程提供人类可理解的解释的 AI 系统。然而,这些解释仅依赖于模型和数据特定的信息。为了支持更好的人类决策,将领域知识集成到 AI 系统中有望增强理解和透明度。在本文中,我们提出了一种在对话系统中将 XAI 解释与领域知识相结合的方法。我们专注于源自计算论证领域的技术,将领域知识和相应的解释融入人机对话中。我们在原型系统中实现该方法以进行初步用户评估,其中用户与对话系统交互以从底层 AI 模型接收预测。参与者能够探索不同类型的解释和领域知识。我们的结果表明,当集成领域知识时,用户倾向于更有效地评估模型性能。另一方面,我们发现用户在对话交互过程中并不经常请求领域知识。
图 2:模型的常见混淆。(A) 我们研究中观察到的常见混淆的示例图像,(B-E) 针对四个文本提示生成没有和有 CLIP 指导的图像。对于每个提示,都会显示八个随机图像,这些图像不是精心挑选的。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
图2:从有或不包含强度定律方程的五个模型的预测孔隙率值的比较:(a)CNN,(b)knn,(c)lstm,(d)RF和(e)xgboost。将强度定律方程组合为输入的图可显着提高预测的准确性,从而与真实的孔隙率值更紧密地对齐。
继 Transformer 架构在自然语言领域取得成功后,类似 Transformer 的架构最近被广泛应用于符号音乐领域。然而,符号音乐和文本是两种不同的模态。符号音乐包含多种属性,既有绝对属性(例如音高),也有相对属性(例如音长)。这些相对属性塑造了人类对音乐主题的感知。然而,这些重要的相对属性在现有的符号音乐建模方法中大多被忽略,主要原因是缺乏一个具有音乐意义的嵌入空间,无法有效地表示符号音乐标记的绝对嵌入和相对嵌入。在本文中,我们提出了基于偏差调整正弦编码的符号音乐基本音乐嵌入 (FME),其中可以嵌入绝对属性和相对属性,并且明确保留基本音乐属性(例如平移不变性)。利用所提出的 FME,我们进一步提出了一种基于相对索引、音高和起始嵌入(RIPO 注意)的新型注意机制,以便充分利用音乐领域知识进行符号音乐建模。实验结果表明,我们提出的模型:利用 FME 和 RIPO 注意的 RIPO 变压器在旋律完成任务中优于最先进的变压器(即音乐变压器、线性变压器)。此外,在下游音乐生成任务中使用 RIPO 变压器,我们注意到臭名昭著的退化现象不再存在,并且 RIPO 变压器生成的音乐在主观和客观评价中都优于最先进的变压器模型生成的音乐。所提出方法的代码可以在线获取:github.com/guozixunnicolas/FundamentalMusicEmbedding
机器学习(ML)为公共和私营部门组织提供了广泛认可但复杂的机会,可以从数据中产生价值。一个关键要求是,组织必须通过与“机器知识”(即可用于为预测模型提供信息的数据)合并相关领域的专家的关键“领域知识”来找到发展新知识的方法。在本文中,我们认为了解产生这种知识的过程对于从策略上开发ML至关重要。在为这种理解做出贡献的努力中,我们通过对瑞典公共部门的两种案例进行探索性研究来研究从领域知识通过ML进行新知识的产生。这些发现揭示了三种机制的作用 - 称为合并,算法中介和归化 - 将领域知识与机器知识联系起来。这项研究贡献了与ML的Orga Nizational使用相关的知识生产理论,对其战略治理,特别是在公共部门中具有重要意义。
我们团队的气候变化和可持续性实践被视为领先的专业实践,以其领域知识,多维专业知识以及涉及涉及公共政策,经济学,技术,金融和项目管理的复杂问题的领域知识和优势。该实践是由基于领域的专业知识团队处理的,该团队已为各种利益相关者提供了可再生能源,电动移动性,能源效率,碳市场,ESG以及新兴和新兴的低碳技术(包括绿色氢)的建议。该团队由各种法律排名机构高度排名,并因为几个地标和先例设置项目做出贡献而被认为。此练习包括: