c生物工程,生物材料和纳米医学(Ciber-BBN)的生物医学研究网络中心,Calle Monforte de Lemos 3-5,马德里,西班牙leo.salgado@csic.es leo.salgado@csic.es基于石墨烯基于求解的溶液基因菲尔德型现场效应晶体管(GSGFET)(GSGFFET)(图。1)在生物医学技术中变得重要。为其应用是对石墨烯 - 电解质界面行为的更好了解[1]。此接口可能会受到几个因素的影响,从而修改最终设备的性能。在第一种方法中,可以将其建模为电容(C INT),该电容与晶体管通道面积成反比[2]。这将其直接观察限制在某些尺寸以下,这主要是由于对连接轨道的寄生作用。在这里,我们已经制造了不同尺寸(50x50,100x100和300x300μm)的独立GSGFET,以测量电化学阻抗光谱谱(EIS),以直接评估界面互动的界面电容,以及通过频率响应的频率效应,通过分析(通过分析频率)进行频率效应(通过分析频率)(通过分析)进行了频率(通过分析)。即使我们期望在频率上具有恒定的电容性行为,EIS结果显示出两个不同的电容响应,由电阻过渡隔开(图2和3)。另外,对于GM结果也观察到了相同的行为,由于这两个不同的耦合能力,即使在较小的GSGFET处,在相同的频率下,有两个不同的收益出现在相同的频率下,在较小的GSGFET下,EIS受寄生效应的限制。最后,在两种方法中,都观察到频率过渡取决于pH(图4),促使以下假设:这种现象可以与GSGFET的SIO 2底物的末端组相互作用。所有这些结果证明,GM频率响应的采用是表征小型制造设备中C INT的有价值工具。使用这种方法获得的数据将非常有用,对于鉴定制造干扰物和改进用于分析GSGFET获得的生物学数据的校准方法。参考文献[1] R. Garcia-Cortadella et al。,Small,16(2020)1906640 [2] E. Masvidal-Codina等人,Nature Mater。,18(2019)280-288个数字
维持发电和需求之间的电力平衡被普遍认为是将系统频率保持在合理范围内的关键。这对于基于可再生能源的混合动力系统 (HPS) 尤其重要,因为此类系统更容易发生中断。本文提出了一种著名的改进型“分数阶比例积分双导数 (FOPIDD2) 控制器”作为创新型 HPS 控制器,以克服这些障碍。推荐的控制方法已在风能、再热热能、太阳能和水力发电以及电容式储能和电动汽车等电力系统中得到验证。通过将改进后的控制器与常规 FOPID、PID 和 PIDD2 控制器进行比较,可以评估其性能。此外,使用新设计的算法术语鱿鱼游戏优化器 (SGO) 优化了新构建的 FOPIDD2 控制器的增益。将控制器的性能与灰狼优化器 (GWO) 和水母搜索优化等基准进行了比较。通过比较最大频率下冲/过冲和稳定时间等性能特征,SGO-FOPIDD2 控制器优于其他技术。分析并验证了所提出的 SGO 优化 FOPIDD2 控制器在各种负载场景和情况下承受电力系统参数不确定性影响的能力。结果表明,无需任何复杂设计,新控制器就可以稳定工作并以适当的控制器系数调节频率。
背景:近年来,聊天机器人在心理健康支持中的使用呈指数增长,研究表明它们可能有效地治疗心理健康问题。最近,引入了称为数字人类的视觉化身。数字人类有能力将面部表情用作人类计算机相互作用的另一个维度。重要的是要研究基于文本的聊天机器人和数字人物之间的情绪响应和可用性偏好的差异,以与心理健康服务互动。目的:本研究的目的是探索由健康参与者测试的数字人类界面和仅使用文本的聊天机器人界面在何种程度上有所不同,使用Betsy(行为,情感,治疗系统和您)使用2个不同的接口:具有拟人化的数字人类,具有拟人化功能和文本单位用户界面。我们还着手探索聊天机器人为心理健康(特定于每个界面)的对话如何影响自我报告的感觉和生物识别技术。方法:我们探索了具有拟人化特征的数字人与仅传统文本聊天机器人通过系统可用性量表感知可用性,通过脑电图的情感反应以及紧密感的情感反应的程度不同。健康的参与者(n = 45)被随机分为2组,这些组使用具有拟人化特征的数字人(n = 25)或仅具有此类特征的仅文本聊天机器人(n = 20)。通过线性回归分析和t检验进行比较。两组的聊天机器人界面的平均值或高于平均水平的可用性评分。结果:纯文本和数字人类群体之间关于人口特征没有观察到的差异。对于仅文本聊天机器人,数字人类界面的平均系统可用性量表得分为75.34(SD 10.01;范围57-90),与64.80(SD 14.14;范围40-90)。女性更有可能报告对Betsy感到恼火。
摘要 技术的普及,尤其是笔记本电脑、智能手机和平板电脑等设备的无处不在,导致大学生对社交媒体平台的使用激增。在当代环境下,工作效率是一个多方面的结构,受薪酬、工作与生活平衡、互联网利用、激励和服务导向型利润链等各种因素的影响。随着组织越来越重视提高员工效率的策略,了解技术使用与工作效率之间的关系变得势在必行。本研究致力于调查从事兼职工作的大学生的技术使用与工作效率之间的相关性。研究对象为 164 名目前正在攻读学位并同时就业的参与者。利用 Pearson 相关性分析在显著性水平 0.01 下评估了技术使用与工作效率之间的关系。此外,还采用回归分析探讨社交媒体使用对工作效率的潜在影响。关键词:技术使用、工作效率、大学生 1. 引言 Boyd 和 Ellison (2007) 认为,社交媒体是一种基于网络的工具,用于在具有相似历史、兴趣和生活方式的人之间建立社交网络和关系。笔记本电脑、智能手机和平板电脑等可访问设备数量的增加推动了社交媒体(Facebook、SnapChat、Twitter、WhatsApp 和 Instagram 等)的传播。人们有很多选择可以通过这些数字设备进行电子通信,而不受地理和时间限制(Junco,2012;Nadkarni & Hoffman,2012;Powell,2009)。由于员工生产力具有多个维度,因此它的概念在管理领域并不新鲜(Palmer & Dean,1973;Adeinat & Kassim,2019)。它目前与许多变量相关,包括薪酬、工作与生活的平衡、互联网使用、互联网激励和服务利润链。如今,组织更注重寻找提高员工生产力的方法(Burke 和 Hsieh,2006 年;Yunus 和 Ernawati,2017 年)。数字媒体有时被称为“新媒体”,是通过计算机、移动设备(如博客、电子书和视频游戏)以及互联网促成的其他物理形式(如硬盘和闪存棒)创建和分发材料。某些学者更愿意将数字媒体与“模拟”进行比较,将“大众媒体”与“新媒体”相对立,等等。将数字媒体与早期的交互式机器和媒体联系起来,数字媒体的历史回顾了计算机的发展
摘要:自本世纪初以来,频率梳发生器已经重塑了频率计量学和相关领域。自首次实现以来的二十多年里,已经展示了几种在任何光谱区域生成频率梳的其他方法,每种方法都有其独特的特性。这种趋势引发了对定量评估新梳实现与理想梳的接近程度的需求,这一特性在本文中被称为梳状性。我们将简要回顾新型频率梳源这一非常活跃的领域,并针对具体应用描述最近开发的技术,用于定量评估新旧频率梳的关键参数。最后,我们将尝试勾勒出这个新兴研究领域的未来发展方向。
可再生能源 (RES) 已成为电网不可或缺的组成部分,但它们的整合带来了系统惯性损失以及负载需求与发电能力不匹配等挑战。这些问题危及电网稳定性。为了解决这个问题,提出了一种有效的方法,将增强型负载频率控制 (LFC)(即模糊 PID-TID µ)与受控储能系统(特别是受控氧化还原液流电池 (CRFB))相结合,以减轻 RES 整合带来的不确定性。该策略的参数优化是使用小龙虾优化算法 (COA) 实现的,该算法以其全局优化能力以及探索与利用之间的平衡而闻名。与传统控制器(PID、FO-PID、FO-(PD-PI))的性能评估证实了所提出的方法在 LFC 中的优越性。在各种负载扰动、高可再生能源渗透率和通信延迟下进行的广泛测试确保了其在最大限度地减少中断方面的有效性。使用标准化 IEEE 39 总线系统进行验证进一步证明了其在应对大量可再生能源渗透的电网中的效率。总之,该综合战略为适应日益增加的可再生能源利用的现代电力系统提供了强有力的解决方案。
摘要频率跳跃序列(FHSS)的大道锤锤相关性(APC)的研究是一个困难的问题,在文献中尚未引起足够的关注。对于低点式区域(LHz)FHSS,APC的研究变得更加困难。我们在APC(LHZ-APC FHSS)下称它们为LHz FHSS。lhz-apc FHSS。首先,我们建立了LHZ-APC FHS集的家庭大小的界限。然后,我们提出了一种基于常规hamming相关性(常规PC FHS集合)的常规FHS集的LHz-APC FHS集构建方法。通过选择不同的常规PC FHS集合,我们获得了三类LHz-APC FHS集,其家庭尺寸根据此新界限是最佳或接近最佳的。此外,我们修改了施工方法,并获得了具有最佳家庭规模的更多新的LHZ-APC FHS集合。
摘要 - 在这封信中,我们通过光学注射增益开关(GS)半导体纳米仪(SNLS)来研究光频梳(OFC)的产生。使用速率方程进行了计算,其中包括percell腔体增强的自发发射因子F和发射偶联因子β。在分析中,评估了F的影响,以改变主和从纳米剂之间的注射强度和频率不吻。通常,由于在广泛的参数空间上进行光学注射,可以实现注射锁定区域,其中生成的OFC具有宽10 dB的频率跨度(F 10),高载体与噪声比(CNR)和窄线路。此外,通过提高注入强度,可以进一步增强F 10和CNR。此外,F 10和CNR分别随着f的增加而减小和增加。这些新颖的发现是基于光子整合电路中光学注射的GS SNL的简单和紧凑源OFC来源的开发。
当今IT环境的典型数据处理,检索和转移[1]促使新一代研究人员寻求具有增强光子应用功能的创新材料。非线性光学(NLO)是这些短语所指的主题。当功能强大的电磁场与材料相互作用时,它会产生与原始场相同的相位,频率和振幅不同的新字段[2]。这种现象正在集中非线性光学元件。某些材料暴露在光线时会发生变化,并取决于方向,温度,光波长等因素。应用程序,例如数据处理,光子学,THZ生成,激光放大器等应用程序[3,4]现在很大程度上依赖于这些材料。研究人员正在逐步专注于寻找新型的NLO材料,以满足对此类物质的不断增长的需求。基于其组成的非线性光学材料有三种类型:有机,无机和半有机物[5]。无机材料具有良好的机械和热稳定性,但非线性值较低[6],而有机材料具有有效的非线性特性,但具有明显的机械和热不稳定性。化学工程方法可用于改变有机非线性材料的特征,以满足各种业务的不断发展的需求[7]。响应增强性能的需求,出现了新的材料,称为半有机NLO材料。除了出色的机械和热稳定性外,它们还包括显着的非线性。各向异性材料是晶体固体,表现出对其特征的定向依赖性。对于NLO行为,有必要在必须是非中心对称的空间群中结晶的非线性材料。
•该项目已全部或部分资金由卫生和公共服务部的联邦资金;战略准备和反应管理;生物医学高级研究与发展局,以下是OT数:HHSO100201800036C。此处的发现和结论是作者的发现,不一定代表卫生与公共服务部或其组成部分的观点。