使用Lasemlation方法在激光脉冲频率和执行时间下从DE离子水和铵溶液中的YVO 4晶体和铵溶液中产生颗粒。流体中的激光消融产生相对较少的材料,因此本研究的目的是测试表征方法在这种情况下的可用性方面。然后使用表征方法的结果得出有关制造过程后粒子大小和结构的结论。被测试的方法是动态光扩展(DLS),框架光谱,X射线和扫描电子显微镜(SEM),具有整合的能量 - 感知X -Ray光谱(ED)。dls和SEM成功确定了颗粒的大小,该粒子的大小为100-1000 nm。这意味着创建了亚微米颗粒。拉曼光谱和EDS设法证明了化学结构在去离子水中的样品似乎相当不变。对于铵溶液中的样品,ED和框架谱的结果尚不清楚。X-射线差异对激光前景尝试中产生的少量材料没有结果。
1 I.物理研究所和Jara-fame,RWTH Aachen University,52056 Aachen,德国2物理学系中东技术大学(METU),06800 ANKARA,Türkiye3 Universit´e Grenoble Alpes Alpes Alpes Alpes,Universit´e Savoie Mont Blanc,Cnrs,Cnrs,cnrs,cnr beih,Lapp-in2puro,74000 Annecy,74000 Annecy,74000 Annecy(北京,100191,中国5电气工程研究所(IEE),中国科学院,北京,北京,100190,中国6,中国科学学院(IHEP),中国科学院,北京学院,北京,100049,100049,100049,中国中国北卡罗来纳大学(UCAS)(UCAS),北比里吉岛401,北京意大利博洛尼亚9大学,40126年意大利博洛尼亚大学10马萨诸塞州理工学院(MIT),马萨诸塞州剑桥市02139,美国11号,美国11号太空科学中心,马里兰州马里兰州大学公园,马里兰州大学公园,马里兰州20742,美国12742,美国12伊普斯特,美国马里兰州501号,美国501.20742意大利佛罗伦萨,14欧洲核研究组织(CERN),1211 Geneva 23,瑞士15 DPNC,DPNC,Universit´e de Geneeve,1211 gen`'Eve 4,瑞士16瑞士16 Universit´e Grenoble Alpes,Cnrs,CNRS,CNRS,Grenoble INP,Grenoble INP,LPSC-IN2P3,LPSC-IN2p3,38000 Grenoble,Franceble,Franceble,france,
法定豁免?否如果是,请列出PRC和/或CCR部分编号,并用逗号分隔。如果否,请输入“无”,然后转到下一个问题。PRC部分编号:无CCR部分编号:无分类豁免?是,如果是,请列出CCR部分编号,并用逗号分隔。如果否,请输入“无”,然后转到下一个问题。CCR部分编号:CAL。 代码regs。,tit。 14,§15301;加州 代码regs。,tit。 14,§15303;加州 代码regs。,tit。 14,§15304;加州 代码regs。,tit。 14,§15306;常识豁免? 14 CCR 15061(b)(3)不,如果是,请解释上述部分豁免协议的原因。 如果否,请输入“不适用”,然后转到下一节。 加利福尼亚大学圣地亚哥分校,物理和社区规划系,于2023年9月20日发布了CEQA豁免通知。 豁免是基于14 C.C.R. §15301,现有设施。 该设备将放置在先前由2.8 MW熔融碳酸盐燃料电池发电厂占用的现有空缺的混凝土基础上,该植物于2023年退役。 先前允许该站点用于主要的电气基础设施和发电设备,并提议的热化学能源存储(TCES)系统以及用于电力到电力储存的涡轮增压器加热的涡轮生成器,将重新使用该大学的一些电气基础设施,以访问大学12 kV电气分配系统。CCR部分编号:CAL。代码regs。,tit。14,§15301;加州代码regs。,tit。14,§15303;加州代码regs。,tit。14,§15304;加州代码regs。,tit。14,§15306;常识豁免?14 CCR 15061(b)(3)不,如果是,请解释上述部分豁免协议的原因。如果否,请输入“不适用”,然后转到下一节。加利福尼亚大学圣地亚哥分校,物理和社区规划系,于2023年9月20日发布了CEQA豁免通知。豁免是基于14 C.C.R.§15301,现有设施。该设备将放置在先前由2.8 MW熔融碳酸盐燃料电池发电厂占用的现有空缺的混凝土基础上,该植物于2023年退役。先前允许该站点用于主要的电气基础设施和发电设备,并提议的热化学能源存储(TCES)系统以及用于电力到电力储存的涡轮增压器加热的涡轮生成器,将重新使用该大学的一些电气基础设施,以访问大学12 kV电气分配系统。此外,与以前的发电机相关的100吨吸附冷却器保持现场功能齐全且允许,并将重新用于提议的热量储能系统操作。此外,第15303节,小结构适用:该项目包括安装小结构。组合的热量和功率(CHP)系统将包括10 MWH-Th-Th-Th-Th-Th-Thin(3 MWH-E)热化学能量存储容器与微涡轮机配对,可用于100 kW-E的峰值电输出量,并在加利福尼亚大学圣地亚哥大学(UCSD)医疗校区的加利福尼亚大学的24小时存储空间。
摘要和原理纳米框微生物组A颗粒利用与亲和力诱饵耦合的独特水凝胶聚合物来吸引,捕获和浓缩完整的病毒和类似病毒的颗粒在许多样本类型中的低丰度中。这些纳米颗粒捕获的微生物可用于下游RNA提取,纯化和分析。纳米图微生物组A颗粒与许多商业核酸提取试剂盒兼容,或者无需核酸提取试剂盒即可使用。
摘要空气中的微型和纳米尺寸塑料颗粒的环境影响知之甚少。在科罗拉多州河流盆地(UCRB; Colorado Rocky Mountains)的高海拔高度(2,865–3,690 m)上大气沉积颗粒(2,865–3,690 m)上的大气沉积颗粒的显微镜分析(UCRB; Colorado Rocky Mountains)表明,黑人物质的存在与微型纤维密切相关,与微塑性纤维相关,与微塑性纤维相关,解释了与Tile Matter Matter Matter Matter Matter Matter Matter Matter Matter。相同的颗粒和相似的颗粒发生在切碎的轮胎和路面样品中。负责所有轮胎的黑色的物质是碳黑色,这是一种由碳氢化合物燃烧产生的石墨降低轮胎添加剂,它同质地渗透到轮胎聚合物和其他添加剂的混合物中。这样的黑轮胎物质可能会发挥辐射效应,与黑碳的辐射效应非常相似。通过二维气相色谱法测量的许多有机化合物类型的雪中存在表明,大气沉积的黑色路线媒介物质是在UCRB中推动雪融化的光吸收颗粒之一。可以通过乘以车辆距离传播的每次侵蚀的每次距离折磨的数量来估算从车辆中脱离的道路通道颗粒的质量。在测量和假设的结合下,关于大气轮胎搭配颗粒的量和辐射特性,这些颗粒的辐射效应可能会使黑碳的效果增加约10%–30%,这是修订的估计。在区域和全球尺度上,发射和沉积的轮胎搭配物的数量和影响可能因地理来源,运输途径和沉积设置的因素而有所不同。
摘要 我们开发了一种分析填充粒子的工具,以应对颗粒生物材料日益流行的趋势。颗粒水凝胶,包括微孔退火粒子 (MAP) 支架,是一类用于治疗应用的材料,因为它们具有独特的性质,包括粒子之间的微孔隙度。颗粒材料的微观结构很难研究,这导致该领域的许多人报告不可靠的空隙体积分数度量和/或 2D 切片近似“孔径”作为空隙空间的唯一特征。为此,我们创建了 LOVAMAP,这是一款定制软件,它结合了计算几何和图论技术,将空隙空间分割成 3-D 孔隙,这是开放空间的自然口袋。LOVAMAP 的 44 个支架特征为用户提供了描述支架内部和入口的定量概况。我们视觉丰富的输出解决了诸如空隙大小、形状、连通性、路径、各向同性/各向异性、配体可用性以及渗透/迁移限制等主题。使用 LOVAMAP,我们研究了 60 种不同类型的颗粒支架,包括具有相应细胞数据的真实 MAP 支架。我们使用高维分析来表明,我们软件的输出数据可用于对 3-D 孔隙类型进行分类,以及通过生成数字“指纹”来表征整个支架。结合细胞数据,LOVAMAP 揭示了神经球形成与支架空隙几何形状之间的关系。LOVAMAP 是一种支持技术,广泛应用于颗粒生物材料研究以及研究颗粒材料的所有领域。背景由于颗粒生物材料越来越受欢迎,填充颗粒及其周围的空隙(间隙空间、孔隙空间)是一个热门研究课题。颗粒材料在许多应用领域都很有吸引力,包括可注射组织模拟物和 3D 生物打印,因为它们具有独特的属性,例如剪切稀化行为、增加的材料表面积以及离散异质性的选项 1,2。由水凝胶微粒(微凝胶)制成的颗粒材料已用于促进多种疾病模型中的伤口愈合,包括中风 3、心肌梗死 4、皮肤伤口 5 和脊髓损伤 6。当微凝胶堆积在一起时,它们形成一种称为颗粒支架的 3D 结构,当颗粒支架的微凝胶连接在一起时,所得到的稳定结构称为微孔退火颗粒 (MAP) 支架 7。堆积的微凝胶在整个支架中形成空隙空间微孔,从而使细胞在颗粒之间畅通无阻地浸润和迁移。许多研究支持局部几何形状影响细胞行为的观点 8-13 ,并且在颗粒支架中,细胞感知到的局部几何形状是空隙空间的微观结构。因此,我们的目标是了解颗粒支架的内部几何形状,以改进材料设计。在生物材料领域,使用二维显微镜图像近似的孔隙率是最常见的支架空隙空间量化方法。孔隙率通常报告为孔隙体积分数或二维“孔”长度测量值的分布。我们之前已经揭示了报告孔隙率的这种近似值的细微差别 14 ,我们认为空隙体积分数和二维孔隙近似值不足以作为独立指标,因为它们忽略了三维空隙空间局部口袋中的复杂性和几何多样性。其他领域(数学、物理、地球科学、化学、农业等)对堆积颗粒进行了广泛的研究,而没有考虑空隙空间几何形状如何影响细胞的行为。研究通常侧重于粒子本身,其中已经开发出方法来识别粒子边界 15-17 或构建接触粒子的图形以研究粒子连通性、填充配置和应力链 18-23 。然而,这些结果未能表征空隙空间。一些以粒子为中心的研究包括有关空隙空间的信息,
图3:A:在280nm的粗反应混合物和两种反应的f disp中,归一化的HPLC曲线。b:原始数据HPLC曲线在400nm的粗反应混合物和两个反应中的F disp。c:这些HPLC剖面中两个主要峰的典型吸光光谱(保留时间为2.7和2.85分钟)。
摘要本研究研究了粒状材料(例如沙子,砾石和工业粉末)范围内的分级熵和统计熵的概念。它提出了一种新型方法,该方法利用了自动非线性模型拟合,并使用参数误差估计和插值来分析粒度分布及其在这些材料中的固有随机性。这种方法的核心在于其在不同条件下预测颗粒材料的行为和特性的能力,这对于土木工程和材料科学等领域的进步至关重要。分级和统计熵理论的整合,以及复杂的非线性模型拟合和插值技术,构成了对颗粒材料进行全面分析的坚实基础。这可以更好地了解其复杂行为,从而增强了它们在科学和工程应用中的实际使用。采用这些先进的方法,表示预测的精度和数据利用效率在颗粒材料分析中的效率取得了重大进步。它突出了
摘要。该纸张呈现粘合剂材料的合理性,用于将碳颗粒掺入电磁辐射吸收器的纤维间空间中。已经开发了一种将碳颗粒掺入纤维材料的方法。它基于将含碳的纳米复合材料施加到纤维材料表面。以前,通过使用水溶液对碳颗粒掺入合成材料的研究,确保了材料结构中碳颗粒的均匀分布。然而,机械变形后材料的特性发生了显着变化。因此,使用乙酸乙烯酸乙烯酸乙烯酸乙二醇聚合物或环氧树脂聚合物或用碳黑色的表面活性物质获得的各种纳米复合材料研究了碳颗粒掺入过程。基于电子显微镜分析的结果以及频率范围为0.7-17 GHz的反射和传输系数频率依赖性,使用基于表面活性物质和碳黑色的混合物来创建电磁辐射器的纳米复合材料的效率是合理的。这种电磁辐射吸收器的传输系数值约为–18 dB,反射系数值在7-13 GHz的频率范围内约为–12 dB。基于纤维材料的含碳电磁辐射吸收器的厚度小于3 mm,柔韧性的性能和对机械变形的抗性。它可用于各个领域,特别是用于隐藏射频侦察的对象或保护设备免受外部干扰。