注意:EIA在2029年没有水力发电的估计。他们的确从2032年开始持续预测,价格为57.37美元。太阳能光伏成本以净AC(交替的电流)功率表示,可用于网格的安装容量。资料来源:美国能源信息管理局(EIA),级别的成本和级别的避免了新一代成本,特殊制表。
这个快速发展的世界中的主要问题之一是以最经济和环境友好的方式满足对能源的需求。这项研究重点是设计垂直轴风力涡轮机(VAWT),该轴向提供了一种相对廉价的可再生能源替代方案的解决方案。当有足够的风旋转风车时,旋转和固定线圈之间的磁耦合会导致风车产生能量。作品展示了风车的垂直旋转原型。风力涡轮机最多可以充电12V电池。这种设计的优点是它可以使用任何化石燃料而没有消耗化石燃料,并且可以有效地进行不适当的天气条件,并且可以自动监控电池电量,而无需任何有害的排放或缺点。本文介绍的工作是如何有效地使用自然资源来发电的一个例子。
海上风力涡轮机 (OWT) 的运营和维护在海上风电场的发展中起着重要作用。与运营相比,考虑到海上运营的实际限制和相对较高的成本,维护是能源平准化成本的关键要素。维护对海上风电场生命周期的影响非常复杂且不确定。维护策略的选择会影响海上风电场的整体效率、利润率、安全性和可持续性。对于海上风电项目,在选择维护策略后,将考虑进度规划,这是一个优化问题。现场维护将涉及复杂的海上作业,其效率和安全性取决于实际因素。此外,海上维护对环境的负面影响值得关注。为了解决这些问题,本文回顾了 OWT 维护的最新研究,涵盖策略选择、进度优化、现场运营、维修、评估标准、回收和环境问题。总结和比较了许多方法。描述了 OWT 运营和维护研究的局限性和工业发展的不足。最后,确定了未来维护策略研究的有希望的领域。
为了满足对廉价绿色氢气的需求,已经开发出专门用于氢气生产的风力涡轮机设计优化框架。该框架通过最小化氢气平准成本 (LCOH) 目标来优化风力涡轮机。初步案例研究结果显示,与使用我们框架的 LCOE 优化涡轮机相比,LCOH 降低了 1.53%。从基线参考涡轮机到 LCOH 优化涡轮机,LCOH 降低了 12.7%。从基线参考涡轮机到 LCOE 优化涡轮机,LCOE 降低了 12.35%。与基线和 LCOE 优化涡轮机相比,LCOH 优化涡轮机具有更大的转子,其中增加的涡轮机成本由增加的氢气产量抵消。本案例研究重点关注单个风力涡轮机-电解器系统,表明使用新的优化目标可以显着节省成本。通过工厂级优化以及包括太阳能电池板和电池存储等其他技术,可以进一步节省成本。
关于 JSW 能源:JSW 能源有限公司是印度领先的私营电力生产商之一,也是市值 230 亿美元的 JSW 集团的一部分,该集团在钢铁、能源、基础设施、水泥、体育等领域占有重要地位。JSW 能源有限公司已在电力行业的价值链中占据一席之地,在发电和输电领域拥有多元化资产。凭借强大的运营、健全的公司治理和审慎的资本配置策略,JSW 能源继续实现可持续增长,为所有利益相关者创造价值。JSW 能源于 2000 年开始商业运营,在卡纳塔克邦 Vijayanagar 投产了首批 2x130 兆瓦火力发电厂。从那时起,该公司的发电能力稳步提高,从 260 兆瓦增加到 7,189 兆瓦,拥有火力发电 3,508 兆瓦、风力发电 1,615 兆瓦、水力发电 1,391 兆瓦和太阳能 675 兆瓦的投资组合,确保了地域分布、燃料来源和电力采购安排的多样性。该公司目前正在建设总计 2.6 吉瓦的多个电力项目,目标是到 2030 年实现总发电能力达到 20 吉瓦。
本作品是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构、其承包商或分包商的观点和意见。
图1说明了碱性水电解的过程(Nickelgreen,2024)。10图2:说明固体氧化电解的过程(Sampangi&Vurimindi,2019年)。12图3:说明了质子交换膜电解的过程(Sampangi&Vurimindi,2019年)。14图4:描述数据收集方法的示意过程。20图5:说明2019年以来SEK/kg中氢的价格。36图6:说明2020年SEK/kg中氢的价格。37图7:说明2021年SEK/kg中的氢价格。38图8:说明耦合系统。NPV(包括氢的销售)表示-52 664 071 SEK的负结果。仅销售电力的NPV也表明了负面的结果,但是经济损失减少-5 845 684 sek。39图9:说明了2020年耦合系统的结果。NPV,包括氢的销售,导致-262 761 339 SEK。风电场的结果表明经济损失为-236 815 828 sek。40图10:显示了耦合系统NPV的结果。npv,包括出售氢,表明26 418 842 sek的结果。风电场的NPV表示为128 287 793 SEK的结果。41
涡轮机在风洞中运行,本文描述了整体实验方法、面临的挑战、经验教训和未来工作的机会。这两项活动分别于 2018 年秋季和 2019 年秋季开展,使用迎面而来的风的预览扰动测量,分别测试了无约束和约束最佳叶片螺距控制器。具体而言,第一项研究考虑了线性二次调节器的扩展以包括前馈作用,而第二项研究部署了模型预测控制以将执行器约束纳入最优控制问题。这些活动的结果已经在控制系统技术会议和期刊论文中发表;但是,这些工作中没有包括如何实现控制器的细节。我们旨在通过这项针对风能社区的贡献来填补这一空白。我们描述了实验设置的几个方面,特别是提供了用于控制器的软件和硬件的细节;分享了对程序中几个困难方面的见解以及我们如何克服这些挑战;并总结了基于模拟的研究和物理测试之间的主要区别。通过这样做,我们希望分享我们学到的东西
,如果安装了现有直径和类别的附加链条,则可以接受现有设备。该附加链条应满足新设备编号的长度要求,附加链条的质量应补偿新设备编号所需的锚质量的增加。
通过在加拿大进行的实验,现在有机会避免这种停机时间。实验表明,使用直升机和热水(不含化学品)可以为涡轮叶片除冰。热水喷洒在叶片上的方式与为飞机除冰以去除积冰的方式相同 - 这是一种简单而有效的方法,Alpine Helicopter AB 看到了进一步开发以加快这一过程的机会。Alpine 主动开发了风力涡轮机叶片除冰溶液设备的原型,与加拿大方法相比,其效果明显更快。该原型于 2013 年秋季向 Skellefteå Kraft AB 的操作员进行了演示。虽然他们对这项技术印象深刻,但该方法需要进一步开发。
