免责声明 本研究合作和资金由美国内政部海洋能源管理局 (BOEM) 太平洋地区办事处 (位于加利福尼亚州卡马里奥) 提供,协议编号为 M19AC00005。本报告已由 BOEM 进行技术审查,并已获准发表。本文中的观点和结论均为作者的观点和结论,不应被解释为代表美国政府的意见或政策,提及商品名称或商业产品也不构成对使用的认可或推荐。本研究由美国能源部 (DOE) 的国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,合同编号为 DE-AC36-08GO28308。海洋能源管理局 (BOEM) 和加州州立理工大学洪堡分校的 Schatz 能源研究中心也为本研究提供了支持,合同编号为 TSA-20-17373。本文中表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留;并且出版商通过接受该文章的出版,承认美国政府保留非排他性的、已付费的、不可撤销的全球许可,可以为美国政府的目的出版或复制该作品的已出版形式,或允许他人这样做。
本文重点研究了无风传感器的四旋翼飞行器的控制,这些飞行器需要在存在中等但未知的阵风的情况下准确跟踪低速轨迹。通过将风扰动建模为外源输入,并假设可以通过准静态飞行器运动补偿其影响,本文提出了一种创新的估计和控制方案,该方案包括一个线性动态滤波器,用于估计此类未知输入,并且只需要位置和姿态信息。该滤波器建立在未知输入观察器理论的结果之上,允许在不测量风本身的情况下估计风和飞行器状态。可以使用简单的反馈控制律来补偿由扰动引起的偏移位置误差。只要有相应的应用转子速度,所提出的滤波器就与用于消除跟踪误差的恢复控制方案无关。首先使用机器人操作系统中间件和 Gazebo 模拟器在模拟环境中检查该解决方案,然后使用四旋翼飞行器系统在真实风源下飞行进行实验验证。
标准数字输出为 RS-232C、RS-485 和 SDI-12,可轻松与 Climatronics 或其他常用数据采集系统连接。还提供各种标准模拟输出。使用磁通门罗盘,风向输出自动参考磁北方向。这款风速计体积小、表面积大,即使在相对较低的功率水平下也能保持无冰状态。这款风速计的加热版本 P/N 102729 包括加热元件,这些元件是工厂安装的。加热器控制箱 P/N 102626 需单独订购。
2017 年 3 月,发布了新版风能发电系统国际标准 IEC 61400-12-01 [1]。第 12-1 部分涉及发电涡轮机的功率性能测量。在附件 G.2 单个顶部安装风速计和 G.4 现场安装仪器中,标准规定:“风速计应安装在一个圆形垂直管上,该管的外径与校准(和分类)时使用的外径相同(± 0.1 毫米),但不得大于风速计主体的直径。”对于不锈钢管的生产,DIN EN 10217 [2] 对焊接管外径规定了不同的公差等级。最精确的等级称为 D4,允许直径在 ± 0.5 % 以内,最小为 ± 0.1 毫米。因此,外径在 30 mm 和 40 mm 之间的管的允许公差在 ± 0.15 mm 和 ± 0.2 mm 之间。常用钢管的公差甚至更大,为 ± 1.0 %,最小为 ± 0.5 mm。这些值超过了新 IEC 标准中给出的规格。购买符合 IEC 标准规格的风速计安装管可能是一项艰巨的任务。在本研究中,评估了安装管直径变化对风速计测量结果的影响。这项研究是与 Adolf Thies GmbH & Co. KG 合作完成的。Thies 为这项研究提供了四种不同直径的安装管。管直径
温度补偿范围:15-35°C (60-95°F):测量范围:0-70°C (32-158°F) 准确度:读数的 ±5% 或 ±0.05m/s (10fpm) 测量准确度 1:±1°C (1.8°F) 读数的 ±10% 或 ±0.05m/s (10fpm) 分辨率:±0.1°C 重复性:读数的 ±1% 温度补偿范围:F900 是热气流传感器;它对空气密度的变化很敏感,并根据一组标准条件(25°C (77°F)、760mmHg (101.325kPa) 和 0%RH)指示速度。F900 的设计使得当在规定的温度补偿范围内使用时,传感器指示非常接近实际空气速度,并且只需要最小的补偿来考虑气压或高度的变化。相对湿度的变化影响很小,通常可以忽略不计。
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49