对谐振介电纳米结构的操纵对于下一代光子设备至关重要。传统上,研究人员为此目的使用二维或相变材料。然而,前者导致较小的效率,而后者则缺乏持续变化。在这里,我们通过激光诱导的修改提供了另一种方法。cally,通过激光消融过程,我们合成了钼(MOS 2)纳米颗粒(NPS),然后我们通过激光片段来控制其组合。它导致MOS 2转化为其氧化物MOO 3 - X,进而导致光学响应的明显修饰,这是由于其光学常数之间的较大差异。此外,与原始MOS 2和经典的硅NP相比,激光碎片的NP具有更大的光热反应。因此,我们的基于MOS 2的激光可触摸NP为共振纳米光子剂(尤其是光热疗法)开辟了新的观点。
肥胖症的过度肥胖是2型糖尿病(T2D),非酒精性脂肪肝病和其他心脏代谢性疾病的显着危险因素。脂肪组织的不健康膨胀(AT)导致脂肪生成降低,脂肪细胞高奖章增加,脂肪细胞缺氧,慢性低度插入,效力造成巨噬细胞增加,巨噬细胞增加以及胰岛素抵抗。这最终导致在功能障碍中以抗体脂肪因子分泌降低,例如脂联蛋白和脂肪素,以及增加的脂肪症状脂肪因子(包括RBP4和抵抗素)的分泌增加。脂肪因子分泌中的这种失败者改变了与靶器官的交流的生理状态,包括胰腺B细胞,心脏和肝脏。在胰腺B细胞中,已知脂肪因子对胰岛素分泌,基因表达,细胞死亡和/或去分化有直接影响。例如,促进胰岛素分泌和B细胞身份的脂肪素的隔离受损,导致B细胞衰竭和T2D,从而提出了一个潜在的可药物靶标,以改善和/或保留B细胞功能。心脏组织受到经典的白色AT - 分泌的脂肪因子和(BAT)分泌的Batokines或Lipokines的新识别的棕色的影响,它们改变了脂质沉积和心室功能。在肝脏中,脂肪因子会影响HE-Patic糖异生,脂质积累和胰岛素敏感性,强调了脂肪肝脏交流在非酒精性脂肪肝病发病机理中的重要性。从这个角度来看,我们概述了有关单个脂肪因子对胰腺B-细胞,肝脏和心脏的影响。
摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 μ m 的六边形像素矩阵,由低噪声和非常快速的 SiGe HBT 前端电子设备读出。使用厚度为 50 μ m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用同一原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
老材料在微电子领域的重要性日益凸显,不仅体现在二级封装(即印刷电路板组装层面),也体现在一级封装(例如,图 1 a 所示的倒装芯片组装)中。1 在这些应用中,各种类型、不同尺寸的焊料凸块用于三维集成电路 (3D-IC) 的复杂互连。1a 典型焊料凸块的构建示意图如图 1 b 所示。当今 300 毫米晶圆级焊料凸块应用技术上最相关的合金材料是电沉积共晶 SnAg。1b 然而,由于 Sn 2+ 和 Ag + 离子的标准还原电位差异很大(ΔE0≈0.94V),通过电化学沉积制造 SnAg 合金是一项艰巨的任务。为了解决这个问题,通常会在 SnAg 电镀液中添加络合剂和螯合剂,这些络合剂和螯合剂选择性地作用于较惰性的 Ag + 离子,从而减慢其沉积速度以与 Sn 2+ 相兼容,并促进两种金属的共沉积。2 这是实现所需合金成分的关键先决条件。3 此类络合剂和螯合剂的另一个补充功能是稳定含 Sn 电解质中的 Ag + 离子,防止其还原为金属 Ag 以及随之而来的 Sn 2+ 氧化
飞秒光谱学夏季和2012年PI:Marcos Dantus教授,部。。2012年夏季:具有新型飞秒纤维激光器源的激光诱导的分解光谱(LIB),没有放大器。引入了一种新型的模型和测量技术,用于飞秒libs的消融阈值。(请参阅上面的出版物。)2011年夏季:配置了一个7飞秒的激光系统,用于单光束相干抗螺旋体拉曼光谱法(CARS)。开发了进行僵化,温度,分子组成和浓度的实时测量的模型。
成为美国标准的小型运载火箭。自 1990 年 4 月 5 日首次飞行以来,Pegasus 迄今已进行了四次发射,将 13 个有效载荷送入轨道。为了提高能力和操作灵活性,Pegasus XL 开发计划于 1991 年底启动。Pegasus XL 火箭增加了推进剂、改进了航空电子设备,并进行了多项设计改进。为了提高 Pegasus 发射系统的灵活性,一架洛克希德 L-1 011 飞机经过改装,可作为运载火箭的运载机。此外,加利福尼亚州范登堡空军基地和弗吉尼亚州瓦洛普斯的 NASA 瓦洛普斯飞行设施正在启动两个新的 Pegasus 生产设施。Pegasus XL 火箭、L-1011 运载机和范登堡生产设施将于 1993 年秋季投入使用。本文介绍了
线性到非线性飞秒激光脉冲在空气中聚焦的能量极限 Yu.E.Geints 1、DVMokrousova 2、DVPushkarev 2、GERizaev 2、LVSeleznev 2、I.Yu.Geints 1,3、AAIonin 2 和 AAZemlyanov 1、1 VE Zuev 俄罗斯科学院西伯利亚分院大气光学研究所,1,Zuev 院士广场,托木斯克 634055,俄罗斯 2 PN 俄罗斯科学院列别捷夫物理研究所,53 Leninskii pr.,莫斯科 119991,俄罗斯 3 莫斯科国立大学物理学院,列宁戈里,莫斯科 119991,俄罗斯 * 电子邮件:ygeints@iao.ru 摘要 紧密聚焦高功率超短激光的传播光学介质中的脉冲通常受介质光学非线性的显著影响,这会显著影响非线性焦点周围的激光脉冲参数,并导致不可避免且通常不受欢迎的焦腰空间扭曲。我们介绍了在不同空间聚焦下飞秒 Ti:蓝宝石激光器脉冲在空气中传播的实验研究和数值模拟结果。我们集中研究了不同聚焦方式下的光谱角和空间脉冲变换 - 从线性到非线性,当脉冲成丝时。据我们所知,我们首次发现了激光脉冲数值孔径范围 - 即从 NA = 2·10 -3 到 5 10 -3(对于 1 mJ 的激光脉冲能量),其中激光脉冲频率角谱和脉冲空间形状的畸变最小。通过数值模拟,我们发现了各种聚焦条件下的阈值脉冲能量和峰值功率,在此范围内,空气中的线性和强非线性激光脉冲聚焦之间会发生转变。结果表明,随着脉冲数值孔径的增大,该能量极限降低。我们的研究结果确定了足够的激光脉冲数值孔径和能量,以获得焦点附近具有良好光束质量的最大激光强度,适用于各种激光微图案化和微加工技术。1.引言光学介质的强非线性通常在高峰值功率激光脉冲在该介质中的传播中起着显著的作用,这导致脉冲时空自调制和其光谱成分的大规模变化,发生在脉冲高强度区域,即在伴随相对较高的自由电子密度的细长等离子体通道的激光束丝中。在空气和其他透明介质(如水、固体电介质等)中,这种丝状物的峰值强度可高达数百TW/cm2,而平均丝状物横向尺寸因传播介质、激光波长和聚焦条件的不同而从几个微米到数百微米不等[1]。在丝状化过程中,激光脉冲发生深度自相位调制,这导致其频率角谱显著丰富。这也导致了宽超连续谱翼[2]和高发散圆锥发射环[3]的形成。到目前为止,已经有大量研究致力于超短激光脉冲的成丝及其可能的应用(例如,参见评论[1,4,5])。在峰值功率P 0 超过自聚焦临界功率P c 的准直或聚焦激光脉冲传播过程中,成丝现象开始于所谓的非线性焦点。可以使用半经验马尔堡公式相当准确地估计到非线性焦点的距离z sf