Securaplane 的应急电池设计使用寿命长、可靠性高且方便使用。XL2410 应急电池系统旨在为照明、28VDC 总线备份和飞行仪表提供应急电源。XL2410 以 1 小时放电率测量,在 18 至 24VDC 下提供 10.5 安培小时的电力。XL2410 旨在提供高达 40A 的输出。
1. 按照 G5 电子飞行仪表实验/LSA 安装手册(190-02072-01,修订版 10)第 8.3 节(第 8-2 页)中提供的说明,将 G5 单元软件更新至 8.16 或更高版本。2. 确保在电源循环后 G5 软件版本 8.16 显示在 G5 屏幕上。3. 确保自动驾驶仪通过飞行前测试 (PFT)。
Honeywell Laseref V 微惯性参考系统 (IRS) 使用数字环形激光陀螺仪来计算姿态、航向、角速率、线性加速度、垂直速度和当前位置信息。IRS 与以下飞机系统接口:• 电子飞行仪表系统 (EFIS);• 气象雷达;• 自动飞行控制系统 (AFCS);• 飞行数据记录器 (FDR);• 地形感知警告系统 (TAWS);• 交通警报和防撞系统 (TCAS);• 失速保护系统 (SPS);• 飞机燃油系统;以及 • 飞行管理系统 (FMS)。
NSSL 系统包括运载火箭、发射能力、标准有效载荷接口、支持系统、任务集成(包括任务独特要求)、飞行仪表和射程接口、特殊研究、飞行后数据评估和分析、任务保证、基础设施、关键部件工程、政府任务主管支持、系统/流程和可靠性改进、培训和其他技术支持。该系统还包括发射场运营活动、支持保证访问的活动、系统集成和测试以及其他相关支持活动。此外,该计划正在努力开发两个或更多满足所有国家安全太空发射要求的国内、商业上可行的航天发射提供商。
眼动追踪是研究飞行员认知表现的相关技术。它为加强飞行员的训练和用于智能驾驶舱的在线监控提供了良好的前景。大多数研究都是在飞行模拟器中进行的,这可能会限制对眼动追踪数据的解释。在本研究中,我们调查了在真实飞行中测量眼球运动的可能性。我们进行了一项实验,让 7 名飞行员在一架真实的轻型飞机上执行两种交通模式和基本飞行动作。我们分析了在不同飞行阶段对主要感兴趣区域(飞行仪表)的注意力分布。这些数据与操作程序进行了对比,并就飞行安全和培训建议与飞行教练进行了讨论。此外,针对第一种交通模式进行训练的分类器可以预测第二种交通模式的三个阶段(起飞、顺风和着陆),平均准确率为 70%。
电子技术的快速发展。这使得伺服驱动仪表在 20 世纪 50 年代成为可能,设计师可以自由地将传感器放置在远离实际仪表的位置。随着数字航空电子技术的不断发展,人们越来越关注显示设计。随着飞机性能的提高,飞行员可以获得更多信息,显示器的数量和复杂性都在增加。从 1970 年到现在,由于电子显示单元 (EDU) 的引入,驾驶舱的外观发生了重大变化。20 世纪 80 年代初,全数字空客 A310 和波音 757/767 在民航中引入了阴极射线管 (CRT) 飞行显示器,这标志着“玻璃驾驶舱”发展的分水岭,“玻璃驾驶舱”与 MFD 同义。典型的玻璃驾驶舱配置包括多达六个电子显示单元、备用飞行仪表(液晶显示器 (LCD) 或机电仪表)和一些
在 1980 年以后制造的飞机中,所有电子飞行仪表系统 (EFIS) 都更为先进,取代了单独的 ADI 和 HSI。当今的飞机(2009 年)仅使用一台 AMLCD 彩色显示器,供飞行员和副驾驶员使用,位于他们正前方。第三个共享彩色显示器显示所有发动机指示器和机组警报系统 (EICAS)。这些显示器取代了大量的仪表组,这使得飞行员投入大量精力和眼球扫描来查看、理解、分析并采取相应步骤,以确保飞机安全飞行。所有计算机生成的刻度盘仪表都遵循“基本 T”配置。机载计算机根据飞行阶段自动决定和选择需要向飞行员展示哪些仪表,以“需要知道”为基础。飞行有各种明确定义的阶段,例如从出发点的地面滑行、起飞、爬升、巡航、下降和地面滑行到到达航站楼。
变速箱以提高起重能力。许多 UH-60A 已转换为 L 标准。除了军事用途外,许多早期的黑鹰直升机还开始作为民用消防飞机或通用飞机重获新生。传统黑鹰直升机的核心问题是机械陀螺仪;每架飞机都配备了一组机电或光纤陀螺仪。这些陀螺仪是航空电子系统的主要部件之一,容易出现故障,维护成本高昂。美国陆军已宣布这些陀螺仪已过时,并于 2020 年 8 月发布通知,要求强制更换这些旧系统。除了这些陀螺仪,早期的黑鹰直升机还配备了大量模拟飞行仪表、无线电、信号显示器和其他可追溯到 20 世纪 80 年代初的组件。除了完整的航空电子设备现代化计划外,Genesys 还为老式黑鹰直升机提供了模块化解决方案。对于预算有限的用户,机械陀螺仪可以用可以“驱动”老式飞行仪表的双数字 ADAHRS 替换。
电子技术的快速发展。这使得伺服驱动仪表在 20 世纪 50 年代成为可能,设计师可以自由地将传感器放置在远离实际仪表的位置。随着数字航空电子技术的不断发展,显示设计受到越来越广泛的关注。随着飞机性能的提高,飞行员可以获得更多的信息,显示器的数量和复杂性也在增加。从 1970 年到现在,由于引入了电子显示单元 (EDU),驾驶舱的外观发生了重大变化。20 世纪 80 年代初,全数字空客 A310 和波音 757/767 在民航中引入了阴极射线管 (CRT) 飞行显示器,这标志着“玻璃驾驶舱”演变的分水岭,“玻璃驾驶舱”是 MFD 的同义词。典型的玻璃驾驶舱配置包括多达六个电子显示单元、备用飞行仪表(液晶显示器 (LCD) 或机电仪表)和一些
°C 摄氏度 AAIB 航空事故调查部门 机场以上高度 Aal AC 咨询通告 ACAS 机载防撞系统 AD 适航指令 ADC 大气数据计算机 ADF 自动测向设备 AFCAS 自动飞行控制与增强系统 AMC 可接受的合规方法 平均海平面以上高度 AOM 航空器操作手册 APU 辅助动力装置 ATC 空中交通管制 ATIS 自动终端信息系统 CAA 民航局 CAA-NL 荷兰民航局 CBIT 连续内置测试 cm 厘米 CS 认证规范 CVR 驾驶舱语音记录器 CWS 控制轮转向模式 DC 直流电 DFDR 数字飞行数据记录器 EASA 欧洲航空安全局 EFIS 电动飞行仪表系统 EGPWS 增强型 GPWS EICAS 发动机指示和机组警报系统 EPTS 紧急俯仰配平系统 FAA 美国联邦航空管理局 FCC 飞行控制计算机 FDR 飞行数据记录器 FGS 飞行引导系统 FL 飞行高度层