亚利桑那大学 OSIRIS-REx 团队首席研究员 Dante Lauretta 博士;亚利桑那大学月球与行星实验室副首席研究员 Heather Enos;美国国家航空航天局项目经理 Rich Burns;美国国家航空航天局/戈达德太空飞行中心副项目经理 Michael C. Moreau 博士;洛克希德马丁空间公司航天器任务运营经理 Sandra Freund;亚利桑那大学 OSIRIS-APEX 副首席研究员 Michael Nolan 博士;洛克希德马丁空间公司航天器科学阶段负责人 Olivia Billett;洛克希德马丁空间公司系统工程师负责人 Jodi Zareski;洛克希德马丁空间公司 OSIRIS-REx TAGSAM 负责人兼科学联合研究员 Edward (Beau) Bierhaus 博士和 KinetX 公司 OREx 导航团队负责人 Peter Antreasian;阿比盖尔·弗兰克是普渡大学航空航天工程专业的大二学生,也是戈达德纪念晚宴主题演讲奖学金的获得者。弗兰克女士领导着普渡大学太空计划的高空团队,负责监督可重复使用的固体火箭的开发,用于研究植物对重力反应的高空实验。作为首席推进工程师,她负责管理试验台的开发,并研究了颗粒几何形状对飞行性能的影响。阿比盖尔积极参与荣誉学院的活动,指导同学,并参与了“引领女性走向太空事业”活动。
简介 感谢您购买 QualityWings Simulations 的 The Ultimate 146 Collection。经过三年多的开发,QualityWings 希望您能喜欢这个附加组件,就像我们为您开发它一样。此附加产品包代表 BAe146 和 Avro RJ 系列,这是英国飞机制造商英国航空航天公司生产的四引擎支线飞机系列。所有生产的乘客变体都已包含,例如旧款 BAe146-100、-200 和新款 BAe146-300,还包括经过大量升级的 Avro RJ 系列,包括 RJ70、RJ85 和 RJ100。所有模型均由我们专业的团队精心打造,内部和外部均采用真实的飞机设计图和现役 BAe146 / Avro RJ 飞行员的专家意见。在系统部门,我们力求准确呈现真实的飞机。最重要的系统都是完全可运行的,而许多其他系统则部分可运行,并在某些方面进行了简化。这是一个有意识的决定,它使许多刚接触我们这个爱好的人能够驾驶这架宏伟的飞机,而不必过于担心所有更先进的系统。为了让经验丰富的模拟飞行爱好者感到满意,部分可运行的系统仍然发挥着重要作用,以至于它们的运行会影响飞行性能。为了您的乐趣,每个模型都配有自己的 2D 面板和虚拟驾驶舱,以充分捕捉这些喷气式飞机的精神和身份。还有什么能体现飞机的精神?当然是声音!飞机模拟从未像这个套件那样听起来如此逼真,我们确信您会对我们创造的沉浸感感到满意。关于这个套件最重要的事实: 所有乘客 BAe146 和 Avro RJ 模型(共六个)
征集投稿和参与 继 ICCAS 2022 取得巨大成功之后,我们很高兴组织 ICCAS 2024 会议。其目的是促进下一代民用和军用飞机科学信息的传播和交流。它提供了一个极好的论坛,将学术研究与工业工作结合起来,以研究如何开发智能飞机系统,该系统拥有更多的选择自由、对环境的敏感性、学习能力,并且能够与机组人员或操作员自然互动,同时节省他们的精神和体力资源。该领域的最新趋势涉及几个主要方面,例如基于行为、生理和神经测量的飞行性能在线监控、设计更生态的人机界面,提供有关飞行或任务状态的直观信息以支持决策过程,以及保证高水平操作安全的架构规则。会议讨论了与神经人体工程学和人为因素或人工智能相关的广泛理论和实践主题。它主要关注航空学,但欢迎来自汽车、机器人、无人机或人工智能等广泛领域的贡献。欢迎作者使用 Word 或 Latex 会议模板提交不超过 300 字的摘要。摘要将由程序委员会审查,并可能被接受进行口头或海报展示。如果摘要被接受,参与者可以选择提交全文(包括 8 页参考文献),同样使用会议模板。全文也将由程序委员会审查。在线摘要汇编将以开放获取的形式发布。提交指南和信息可在 https://events.isae-supaero.fr/event/32/page/145-contributions 上找到。摘要提交是可选的:学术、工业和学生参与者只需简单注册即可参加会议。
在过去十年中,空中机器人已成为帮助人类解决广泛的时间敏感问题的重要平台,2020)。在不同类型的空中机器人中,四型二次运动因其在设计,低成本,较小,尺寸小,轻巧和出色的机动性方面的简单性而对在不确定和混乱的室内环境中的应用引起了兴趣(Emran&Najjaran,2018年)。这些对时间敏感的任务通常需要四肢制定快速决策和敏捷的操作。因此,为了安全地控制这些系统,至关重要的是要准确地对其动力学进行建模和估算,并捕获空气动力和扭矩,螺旋桨相互作用,振动,模型近似和其他现象产生的高度非线性效应。但是,这种效果不能轻易测量或建模,因此通常保持隐藏状态(Saviolo,Li,&Loianno,2022)。此外,在某些空中机器人应用中,该平台可能会赋予外部范围(例如有效负载,操纵器,电缆),这些件将通过改变系统配置(例如质量和惯性矩)来大大改变动态。总体而言,未能建模这种系统配置更改将导致飞行性能的显着降解,并可能导致灾难性故障。为了避免此问题,最近的工作已经调查了使用基于物理学的原理方法进行四型动力学的经典建模,从而导致非线性普通微分方程(ODE)(Loianno,Brunner,McGrath和Kumar,2017年)。但是,这些名义模型仅近似实际的系统动力学,并且不考虑由系统配置的积极操作或修改引起的外部效果。
商用运输飞机的结构载荷分析:理论与实践 TedL。Lomax,1996 航天器推进 Charles D. Brown,1996 直升机飞行动力学:飞行品质和仿真建模的理论与应用 Gareth Padfield,1996 飞机的飞行品质和正确测试 Darrol Stinton,1996 飞机的飞行性能 S. K. Ojha,1995 测试和评估中的运筹学分析 Donald L. Giadrosich,1995 雷达和激光截面工程 David C.Jenn,1995 动态系统控制简介 Frederick O. Smetana,1994 无尾飞机的理论与实践 Karl Nickel 和 Michael Wohlfahrt,1994 防御分析中的数学方法第二版 J. S. Przemieniecki,1994 高超音速气动热力学 John J. Bertin,1994 高超音速吸气式推进William H. Heiser 和 David T. Pratt,1994 实用进气气动设计 E. L. Goldsmith 和 J. Seddon,编辑,1993 国防系统的采办 J. S. Przemieniecki,编辑,1993 大气再入动力学 Frank J. Regan 和 Satya M. Anandakrishnan,1993 柔性结构动力学与控制简介 John L. Junkins 和 Youdan Kirn,1993 航天器任务设计 Charles D. Brown,1992 旋翼结构动力学与气动弹性 Richard L. Bielawa,1992 飞机设计:概念方法第二版 Daniel P. Raymer,1992 观测与控制过程优化 Veniamin V. Malyshev、Mihkail N. Krasilshikov 和 Valeri I. Karlov,1992 壳体结构的非线性分析 Anthony N. Palazotto 和 Scott T Dennis,1992 轨道力学 Vladimir A. Chobotov,1991 国防关键技术 空军技术学院,1991 国防分析软件 J. S. Przemieniecki,1991 超音速导弹进气口 John J. Mahoney,1991
在过去的十年中,在森林监测和遥感中使用无人机已经非常受欢迎。大多数监视任务发生在高海拔和露天的情况下,但在过去的几年中,无人机也对自动范围的数据收集产生了兴趣。但是,在森林冠层下飞行是一项复杂的任务,因为无人机无法将全球导航卫星系统(GNSS)用于定位,并且必须不断避免在其路径上避免障碍物,例如树木,树枝和岩石。因此,森林冠层下基于无人机的数据收集仍然主要基于人类飞行员的手动控制。在GNSS贬低的障碍物富裕环境中,自主飞行在过去几年中一直是一个积极研究的主题,并且在文献中发表了各种开源方法。但是,大多数研究纯粹是从机器人技术的观看点进行的,只有少数研究在森林科学和机器人技术的边界中发表,旨在采取步骤迈向自主森林数据收集。在这项研究中,使用最先进的开源方法开发并实施了自动伪造无人机的原型。该原型利用自主障碍物避免自主障碍物和基于视觉惯用式渗透测量法的自主障碍物避免自主障碍物的轨迹计划者。通过在两个不同的北方森林测试地块中使用中等和困难密度的两种不同的硬件进行多个测试飞行来评估原型的飞行性能。DBH估计的RMSE为3.86 cm(12.98%)。此外,通过在一次飞往3D点云的测试飞行中使用低成本立体声摄像机收集的数据,并通过在高度(DBH)估算上执行直径乳房,从而获得了森林数据收集性能的第一个结果。在中等密度的森林中,所有七个试飞都取得了成功,但是在艰难的测试森林中,八个测试飞行之一失败了。
阿比盖尔是普渡大学的一名大二学生,主修航空航天工程。作为普渡大学太空计划 (PSP) 高空团队的项目经理,她带领一支由 100 多名学生组成的团队设计、测试和建造一枚可重复使用的固体火箭,该火箭能够携带生物有效载荷飞到 15 公里高空。该实验将研究植物对高重力的反应。她之前曾担任首席推进工程师,负责监督一个团队开发一种新型测试台、进行特性测试、设计一种飞行就绪的发动机,并研究颗粒几何形状对飞行性能的影响。作为测试操作和任务控制工程师,她还负责子系统制造和测试的安全程序和物理基础设施。在普渡大学,阿比盖尔是荣誉学院导师、荣誉工程导师,也是目前引领女性走向太空职业的队伍中的一员。她对领导理念和建立高度职能的团队特别感兴趣。去年夏天,阿比盖尔在美国国家科学基金会的资助下在肯尼亚开展了一项研究。她专注于教育政策和课程框架,将年轻母亲纳入图马尼创新中心,以此提供长期就业机会和摆脱极端贫困的途径。她的研究获得了普渡大学本科生研究会议和约翰·马丁森荣誉学院的优秀奖,并成为全球健康演讲系列的一部分。在高中时,阿比盖尔是华盛顿大学的 NASA 西部航空航天学者,并对长期太空旅行的心理后果进行了广泛的研究。她领导了学校的可持续发展俱乐部,并继续对可持续发展和载人航天的交集着迷。她是毕业生代表,获得了 IB 文凭和俄勒冈州双语印章。她与老师保持着密切的关系,并定期回到她的高中进行演讲并为学生提供间隔年选择、道德志愿服务、高中到大学的过渡和 STEM 机会方面的建议。阿比盖尔在竞技艺术体操运动方面有着长期的运动生涯,曾游历美国、加拿大和日本,并成为美国青少年奥林匹克队成员。后来,她担任大型体操队的主教练,被评为地区年度最佳教练,并为她的运动员制定了强大而持久的训练计划。从六岁起,马就成了阿比盖尔生活中的重要组成部分,她曾被评为俄勒冈州年度最佳女骑手,并三次获得全国马术冠军。
执行摘要 本文探讨了是否有可靠的数据表明当今美国的航空安全与不明飞行物 [UAP](也称为不明飞行物 [UFO] 或飞碟)之间存在显著关系。讨论了三种已报告的 UAP 动态行为和后果,每种行为都会影响航空安全:(1) UAP 在飞机附近进行的近距离碰撞和其他高速机动,(2) 影响导航、制导和飞行控制系统的飞机上的瞬态和永久电磁效应,以及 (3) UAP 的近距离接触飞行性能导致驾驶舱分心,从而妨碍机组人员以安全的方式驾驶飞机。针对这三个主题,回顾了一百多起 UAP 与商用、私人和军用飞机之间近距离接触的记录。这些报告来自多个来源,包括作者的个人文件、美国联邦航空管理局 (FAA)、美国国家运输安全委员会 (NTSB) 和美国国家航空航天局管理的“航空安全报告系统 (ASRS)”编写的航空报告。有趣的是,所有美国政府来源都表明,飞行员根本不报告他们的 UAP 目击情况,或者,如果他们报告,他们在报告险些相撞和/或飞行中遭遇时几乎从不使用 UAP、UFO 或飞碟等术语。我的结论是:(1) 为了避免与 UAP 相撞,一些飞行员进行了控制输入,导致乘客和机组人员受伤。(2) 根据对 1950 年至 2000 年美国本土上空 UAP 飞行员报告的全面审查,得出结论,由于 UAP 表现出高度机动性,因此不存在因碰撞而对航空安全造成直接物理威胁的情况。但是,(a) 如果飞行员在极近距离接触期间在错误的时间做出错误的控制输入,仍有可能与 UAP 发生空中相撞;(b) 如果飞行员在异常电磁效应导致其发生故障时依赖其仪器,则有可能发生事故。(3) 飞行员至少在五十年前就看到并报告了有记录的 UAP 现象,但其中许多报告者要么受到嘲笑,要么被指示不要公开报告他们的目击情况。这个非机密信息交换中心应收集、分析和报告 UAP 目击事件,以持续保障航空安全并满足科学好奇心。(4) 负责任的世界航空官员应认真对待 UAP 现象,并发布明确的报告程序,无需担心遭到嘲笑、斥责或其他职业损害,并以支持科学研究的方式进行报告;(5) 航空公司应开设教学课程,向飞行员传授在 UAP 附近飞行时应执行的最佳控制程序,以及在可能的情况下应尝试收集哪些数据;(5) 应确定一个中央清算机构来接收 UAP 报告(例如 ASRS;全球航空信息网络 (GAIN))。无论 UAP 是什么,它们都可能对航空安全构成危害,应得到适当和公正的处理。