执行摘要 太空飞行与多种可能促进肾结石形成、尿潴留和/或尿路感染 (UTI) 的因素有关。根据美国国家航空航天局综合医学模型提供的国际空间站 (ISS) 任务预测,肾结石是国际空间站紧急医疗后送的第二大可能原因,败血症(尿脓毒症为主要驱动因素)位列第三。水合状态的改变(相对脱水)、太空飞行引起的尿液生物化学变化(尿液过饱和)、微重力引起的流体动力学和腹部结构位置的改变以及微重力环境下骨代谢的变化(钙排泄增加)都可能导致泌尿健康问题风险增加。本医学技术简介介绍了尿潴留、UTI 和肾结石的状况,以及它们如何影响太空飞行条件,以及用于预防它们的结果和对策。
减少下划线步骤 在 FRC 开发期间,由来自 DES、训练和条令局 (DOTD)、AMCOM、系统准备部门和陆军实验试飞员的成员组成的验证/验证团队修改了每架飞机的许多紧急程序。通过此过程,验证/验证团队能够将所有三个战斗旋翼平台上带有下划线步骤的紧急程序总数减少约 60%。这是整个 FRC 开发过程和应急响应方法的关键方面,因为这些更新的紧急程序使机组人员能够真正专注于确定最重要的紧急程序,以恢复或保持安全飞行条件。这种重点转移与几个联合和伙伴国家航空部队的行动相一致,并满足了现代化航空部队的需求。
减少强调步骤 在 FRC 开发期间,由来自 DES、训练与条令局 (DOTD)、AMCOM、系统准备部和陆军实验试飞员的成员组成的验证/验证团队修改了每架飞机的许多应急程序。通过此过程,验证/验证团队能够将所有三个战斗旋翼平台上带有强调步骤的应急程序总数减少约 60%。这是整个 FRC 开发过程和应急响应方法的关键方面,因为这些更新的应急程序使机组人员能够真正专注于确定最重要的应急程序,以恢复或保持安全飞行条件。这种重点转移与几个联合和伙伴国家航空部队的行动相一致,并满足了现代化航空部队的需求。
开发成熟的热保护系统是一个漫长的过程,涉及高级工具,广泛的研究和测试。设计和分析工具用于预测空气热环境,帮助测试和飞行硬件的设计,并支持对热保护系统的热/机械响应进行测试。最近,计算方法的进步有助于减少技术进步的时间和成本,有助于优化材料架构设计,并提高材料属性和性能。虽然模拟太空飞行条件的高触觉测试对于评估和开发TPS材料仍然至关重要,但计算工具已经显示出在减少广泛测试的需求方面的希望,并且可以帮助快速跟踪设计周期。
摘要。未来的驾驶舱将通过改进的航空电子设备得到增强,这些电子设备可以适应飞机和操作员的状态。眼动追踪可以对飞行员的眼球运动进行非侵入性分析,从中可以得出一组指标,以有效、可靠地表征工作量。这项研究确定了与飞机自动化条件相关的眼动追踪指标,并确定了飞行员工作量与相同自动化条件的相关性。扫视长度被用作飞行员工作量的间接指标:与引导和手动飞行条件相比,全自动条件下的飞行员平均扫视运动更大。数据集本身还提供了人类眼球运动行为的通用模型,因此表面上可以通过与工作量算法开发相同的指标来描述驾驶舱内不同自动化程度的着陆任务的视觉注意力分布。
液压系统为表面执行器提供主要和备用液压。对于给定轴上的三个类似的运动反馈传感器故障,使用数字直接电气连接 (DEL) 模式完成控制,该模式提供从飞行员输入传感器到控制表面执行器的直接电气路径。如果三个数字处理器发生故障,则纵向和滚转控制通过对稳定器的备用机械模式完成。机械控制是传统的电缆、推杆和曲柄系统。在机械备用模式下,操纵杆到稳定器传动装置通过非线性连杆进行修改,以提供操纵杆力和偏转或所有飞行条件之间的所需灵敏度。在机械模式下,可通过模拟 DEL 路径控制副翼或方向舵。如果发生完全电气故障,则只能对稳定器进行机械控制。
我们提出了Aesim,这是一种使用基于变压器的跨性生成对抗网络开发的数据驱动的飞机发动机模拟器。AESIM生成飞机发动机传感器测量的样品,以完整的航班为条件,以代表飞行条件的给定飞行任务配置文件进行。它构成了飞机发动机数字双胞胎的重要工具,能够模拟它们的不同飞行任务的性能。可以比较在相同的操作条件下不同发动机的行为,为给定引擎的各种方案ios模拟,促进了诸如发动机行为分析,绩效限制识别以及在全球预后和健康管理策略内的维护时间表等应用。它还允许缺少飞行数据,并通过综合可用于公共研究目的或数据挑战共享的合成飞行数据集来解决机密性问题。
飞行条件超过 5 小时,其中三分之二以上在 FL 100 以上,可能导致缺氧症状的出现。在这种情况下,飞行员的心血管系统可能会受到要求,而该系统的调节可能受到其健康状况和高血压治疗的影响。虽然对路径的分析似乎排除了缺氧的主要问题,但飞行员的心血管病理及其治疗可能削弱了他对这种真正长时间劳累的适应能力。这可能是一个促成因素,因为它剥夺了他维持滑翔机路径或在湍流空气中分析关键阶段情况所需的体力和脑力资源。最后,使用 LX 9000 计算机的数据估计的滑翔机的最终倾斜角表明转弯时的负载因素可能会增加大脑的供氧不足。调查无法确定飞行员是否使用了氧气。然而,飞行结束时没有使用氧气,电子氧气输送装置被关闭。
摘要 舰载机滑跃起飞飞行条件特殊、飞行速度低,对飞行安全构成威胁。处理该多学科交叉问题,需要综合考虑航母运动、飞机动力学、起落架和海况风场等因素。针对舰载机滑跃起飞的具体海军作战环境,建立了涉及舰载机、飞机、起落架运动实体,涉及起飞指令、控制系统和甲板风扰动的多体系统一体化动力学仿真模型。基于Matlab/Simulink环境,实现了多体系统仿真。通过舰载机滑跃起飞算例仿真,验证了模型的有效性和结果的合理性。该仿真模型与软件适用于舰载机起飞性能、飞行品质与安全、起落架载荷影响、航母甲板参数等多学科交叉问题的研究。ª 2013 CSAA & BUAA。由 Elsevier Ltd. 制作和托管。保留所有权利。
ˆ ˆ 飞行条件超过 5 小时,其中三分之二以上在 FL 100 以上,可能导致缺氧症状的出现。在这种情况下,飞行员的心血管系统可能受到要求,而该系统的调节可能受到其健康状况和高血压治疗的影响。尽管对路径的分析似乎排除了缺氧的主要问题,但飞行员的心血管病变及其治疗可能削弱了他对这种真正长时间劳累的适应能力。这可能是一个促成因素,因为他失去了维持滑翔机路径或在湍流空气中分析关键阶段情况所需的体力和精神资源。最后,使用 LX 9000 计算机的数据估计的滑翔机的最终倾斜角表明转弯时的负载因素可能会增加大脑的供氧不足。调查无法确定飞行员是否使用了氧气。然而,飞行结束时没有提供氧气,电子氧气输送装置被关闭。