o 用搅拌机加冰混合 o 将脱咖啡因咖啡添加到巧克力和香草口味中 o 将提取物添加到奶昔中 - 薄荷、杏仁、樱桃、香蕉 o 无糖咖啡糖浆 - 焦糖、肉桂、摩卡
•技术套餐和咨询服务增强了香草,chiltepín和西红柿的生产。•它的存在有助于建立38个合作社,从而使280多家生产者受益。Five years after its inauguration, the Centro de Innovación e Integración de Tecnologías Avanzadas (CIITA) Unidad Veracruz of the Instituto Politécnico Nacional (IPN) stands as clear proof of the positive impact of science and technology on economic and social development, not only regionally in Papantla, where it is located, but throughout the entire state of Veracruz.技术创新是Ciita Veracruz的关键要素,其在农业部门的好处是无数的。这些进步是由IPN专家根据与生产者和技术创新的合作开发的公式产生的。这种方法导致了重大的经济和社会利益,植根于中心与生产者和合作社合作提供的广泛服务。Ciita Veracruz主任Francisco Javier PicasoCastañeda强调,IPN仍致力于推动发展,并指出该中心已成为农业影响的全州范围基准。他强调,通过技术包和咨询服务,香草的生产有所增加。具体来说,1,200公斤的香草从快速干燥技术中受益,这将处理时间从3-4个月大幅减少到仅48小时,从而阻止了生产者的年收成。也使用了相同的技术来加速胡椒的干燥过程。
方法:给雄性瑞士韦伯斯特小鼠喂食高脂饮食和链脲佐菌素以分别诱发肥胖症和糖尿病。诱导后,小鼠以 20 毫克/公斤体重的剂量接受橄榄苦苷或羟基酪醇治疗,持续 14 天。在整个治疗期间监测空腹血糖水平、胰岛素敏感性和葡萄糖耐量。此外,还进行了肝脏和胰腺的组织学检查。此外,还进行了计算机对接研究,以评估橄榄苦苷和羟基酪醇与关键代谢受体的相互作用,例如过氧化物酶体增殖激活受体γ (PPARγ)、羟基类固醇 11-β 脱氢酶 1 (HSD11B1) 和果糖双磷酸酶 1 (FBP1)。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年6月19日。 https://doi.org/10.1101/2024.06.18.599612 doi:Biorxiv Preprint
作为抵制压力和焦虑的一种补救措施,大麻二酚(CBD)产品对兽医医学的兴趣越来越高。有限的数据可用,以描述CBD在马中的实际有效性。这项研究的目的(第2部分,第2部分)是通过行为观察,心率监测和评估血液和唾液皮质醇水平在健康马中反复治疗的CBD含有糊状的CBD。十二匹马被随机分配到治疗或对照组。在双盲研究设计中口服了两种糊状物,一种含有CBD的糊状和一种糊状,而没有活性成分。两种糊剂在15天内每天两次(剂量:3毫克CBD/kg)。每天使用镇静评分和面部表情评分进行行为观察,这是基于先前描述的马(面部)和马鬼刻板的面部镇静量表。血液和唾液样品,以确定整个研究中的皮质醇水平。通过液相色谱/串联质谱法(LC/MS/MS)分析皮质醇水平。 在组之间比较了行为观察和皮质醇水平。 在给药之前,进行了新的对象测试,并记录了马对拖车上的负载的反应。 粘贴13天后重复两项测试。 运动模式,例如在新型对象测试过程中的不同步态,并设计了伦理图来评估表现出的行为特征。皮质醇水平。行为观察和皮质醇水平。在给药之前,进行了新的对象测试,并记录了马对拖车上的负载的反应。粘贴13天后重复两项测试。运动模式,例如在新型对象测试过程中的不同步态,并设计了伦理图来评估表现出的行为特征。心脏跳动(R-R)间隔始终记录并使用心率(HR)和心率变异性(HRV)参数进行评估。血液和唾液样品用于皮质醇分析之前和之后。每日行为观察和皮质醇水平在治疗组和对照组之间没有差异。同样,在新颖的对象测试和拖车测试期间对运动模式,人力资源,HRV和皮质醇水平的分析并未确定两组之间的显着差异。定期施用口服CBD(15天内出价3 mg/kg)对马的行为观察,皮质醇水平,HR和HRV没有统计学上的显着影响。需要进一步的研究来建立足够的剂量和指示,以在马中使用CBD。
基线空腹木糖醇水平,但不是山梨糖醇或促嗜性醇的水平,在非培训器中比进度者中的木醇水平是higer(p <0.001)。与进度者相比,非宣传者的比例在木糖醇水平的第三三位数(71/180个非推测器[39.4%]与49/180的进步者[27.2%])中。调整了潜在的混杂因素后,与最低四分位数相比,木糖醇水平最高三重的入射糖尿病风险比值比为0.338(95%置信区间0.182-0.628)。此外,木糖醇水平和入射糖尿病之间的关联在糖尿病亚型中持续存在,其空腹血糖和高空腹和2h post植物的血糖都存在,但在分离的高2H-POST植物的高poSt植物血糖亚型中消失了。
草莓(fragaria×ananassa duch。)是全球消费和耕种最广泛的水果之一。山梨糖醇在植物对许多生物和非生物胁迫的反应中起作用。在这项研究中,我们打算了解山梨醇喷涂对草莓叶的生物活性化合物的影响。在不同浓度(0、25、50毫米和75毫米)中施用山梨糖醇,大大改善了草莓特征,例如总叶绿素,叶绿素A和B,类胡萝卜素和总酚类。随着山梨糖醇浓度的增加,叶绿素a和叶绿素B值在结果期间采集的样品中增加,并获得了更高的值。与对照相比,用山梨糖醇处理的草莓植物中的类胡萝卜素含量增加了约189.49%,总酚含量增加了30.85%。山梨糖醇的供应减少了类黄酮含量。结果表明,山梨糖醇治疗对草莓的整体生长没有抑制作用。在分析的生化参数中,叶绿素,酚类和类胡萝卜素含量增加,而山梨糖醇的含量随施用山梨糖醇的含量降低。
图1:可编程医学框架的概述,该框架将多种多样和临床数据与文献支持的疾病知识图,宠物建模管道和Geneterrain分析相结合。该过程始于基因组的疾病基因策略,包括遗传变异,差异表达和药物靶标(步骤0-1)和知识图构造(步骤2),然后进行宠物模型产生(步骤3)和参数优化(步骤4)。然后,将优化的模型用于宠物实验(步骤5),以预测新型的治疗靶标,最终导致Geneterrain知识图的产生(步骤6),以全面可视化多量表疾病机制和药物效应。这种综合方法旨在完善目标发现,指导药物重新利用和加速临床翻译。
这种生物活性鞘脂是通过鞘氨醇磷酸化的产生的,由鞘氨酸激酶,SK1和SK2的两种同工型(Gaire and Choi,2020年)催化,然后由S1p磷酸酶和脂肪磷酸盐磷酸盐酶或子磷酸酶(S1p)closear and s1p(S1p)裂解为鞘氨酸,并将其水解回到鞘氨酸中。 2009);可以通过不同类型的膜转运蛋白(Baeyens and Schwab,2020)在细胞外导出S1P,以结合S1P 1-5并在所谓的“内外信号传导”中作用。此外,S1P还可以与细胞内靶标相互作用:核S1P降低了与转录基因调控有关的HDAC活性,并在记忆习得和恐惧灭绝记忆的髋关节功能调节中起作用(Hait等,2009)(Hait等,2014)。另外,线粒体S1P与防止素2结合,并且在调节呼吸链复合物组装和线粒体呼吸中起重要作用(Strub等,2011)。最近的研究表明,S1P与调节多种生物学事件有关,例如细胞增殖,凋亡,自噬和炎症(Cartier and HLA,2019)(Obinata和Hla,2019)(Xiao等,2023,2023)(Taha等,2006)。此外,许多最近的研究表明,S1P信号传导途径的失调参与了不同疾病的病理过程,例如癌症,糖尿病,神经退行性变性和CAR Dioseancular疾病(Takabe and Spiegel,2014,2014)(Guitton等,2014)(Guitton等,2020)(2020年)(Van Echtenten-Deckert,2023),Ala,Ala,ala amakery,Alakery,Alakery,ana amakery,AlaM。值得注意的是,S1P在缺血过程中也起着至关重要的作用(Mohamud Yusuf等,2024):的确,几项研究表明,缺血性挑战后的啮齿动物大脑中的S1P水平升高(Kimura等,2008,2008年)(Moon等,2015)(Salas-perdorcity et nirimate and in Indiending and Isporigation et and 2019),2019年(Sun。大脑损害。值得注意的,fingolimod(fty720),用于治疗复发性多发性硬化症后,在被磷酸化后,通过与五个S1P受体中的四个(S1P 1,S1P 3,S1P 4,S1P 4,S1P 5)结合起作用(Choi等人,2011)(Gr.,2011)(Gr- ^ alererererereT,2004) Brinkmann等,2010)并在脑缺血的各种啮齿动物模型中发挥神经保护作用(Czech等,2009)(Nazari等,2016)和具有脑出血的缺血性PA剂量(Fu等,2014)(Zhu等,2015)。S1P受体水平似乎在脑缺血中似乎失调:S1P受体mRNA和S1P 1,S1P 2,S1P 2,S1P 3和S1P 5的蛋白质表达在TMCAO(Salas-Perdomo等,2019)(均可用来的靶标)中,在TMCAO(Salas-Perdomo et and and Injotignt)中,在小鼠脑的不同区域中上调了小鼠脑的不同区域,治疗脑缺血(Gaire and Choi,2020年)。