挪威气象研究所(MET NORWAY)在天气预报开发中心的机器学习(ML)科学家开设了永久性地位。成功的候选人将在建立,部署和应用世界领先的,基于ML的天气预报系统中发挥重要作用。这项工作是与欧洲中等天气预报(ECMWF)以及欧洲其他组织合作进行的。这项工作将涉及解决地球系统建模的机器学习中令人兴奋的研究问题,重点是北欧天气条件。优化大型ML模型和探索合奏方法将是开发和实施最佳模型配置以进行准确可靠的天气预测的关键。另一个主题是构建和扩展可用于培训的ML就绪数据集。结果将支持ML在天气科学和先锋数据驱动的预测模型中的快速发展及其在改善天气服务(例如YR)的天气预测价值链中的作用。
1简介汽车行业已成为电动驱动器和电力产品的主要市场。准确的交流电流(AC)和直流电流(DC)电动机在电源转换器供电的广泛的功率和速度上,基于隔热栅极双极晶体管,具有复杂的监控和管理系统已成为现代车辆的固有部分[1]。在这种情况下,探索和测试平台的电池驾驶电动汽车(BEV)完全由电动机推动,如今已引起人们的极大关注。他们允许学习并优化车辆性能,减少真实机器的测试次数并提供安全性。许多研究机构和越来越多的工程学校在其实验室中引入了测试工作台[2]。严重的参考文献描述了在不同的
引用Lai,Adrian K M,Dick,Taylor J M,Biewener,Andrew A和Wakeling,JamesM。皇家学会界面杂志18,第1期。174(2021):20200765。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
实施可再生能源产生的广泛方法,[1]和大规模采用电动汽车。[2]这种绿色过渡只有在开发高效且环保的储能系统时才有可能。[1-3]作为最突出和通用的能源存储系统,电池被认为是以环境和社会经济上可疑的方式存储/传递按需功率的至关重要的齿轮。[4]理想情况下,可持续的能源存储设备应提供较大的能力,具有良好的利率能力,具有较长的运行寿命,最重要的是,依赖于无毒和非关键材料。[5–7]这些严格的要求位移锂离子蝙蝠(LIB)是真正绿色电池的首选选择。[5]当前的LIB在电解质(六氟磷酸锂,碳酸盐酯)中使用有毒和易燃化学物质,以及欧盟列出的元素为关键原料(CRMS),包括钴,锂或石墨。[8,9]除了在玻利维亚,阿根廷,智利,澳大利亚和刚果民主共和国的高供应风险外,CRM的处置和随后的海洋/垃圾填埋场都严重威胁动物和 div>
在数据科学和机器学习的不断发展的景观中,时间序列建模的领域已成为一个重要且挑战性的研究领域。时间序列数据及其独特的时间依赖性和顺序模式,在金融,医疗保健和气候科学等各个领域中找到了应用[1,2,3]。时间序列的准确建模对于创建强大的模型和理解复杂系统至关重要。建模时间序列的一种方法是通过生成模型[4],该模型在异常检测[5]和数据增强[6]中具有实际应用。在本文中,我们提出了一种基于时间序列生成和建模的神经SDE的新颖方法。尤其是,我们旨在创建一个可以利用默顿模型[3]作为跳跃框架的模型,该模型可以考虑实际市场的跳跃。归一化流是具有易生化密度估计的生成模型家族。主要思想是通过组成几个函数f i将初始复杂的数据分散分散转换为一个简单的想法。有一些
马拉松驱动器在良好的网格条件下表现出卓越的性能,并且在浮动操作中显示出可靠的备份功率。其其他强大功能在这些市场中提供了更多的功能。他们支持诸如5G部署和正在进行的网络致密化之类的挑战,这些挑战需要小包装中的专门电池,并且耐受性较高的寿命更长。随着循环寿命的增强,马拉松式动力汽车还解决了新趋势,例如分散的能源解决方案以及对更高可持续性的需求。
