(c) 在使用人工智能工具进行任何与工作相关的用途之前,无论其位置如何,只要该用途不在列表中,未获得其部门和工作分类的特别批准,或未获得人工智能用户希望使用人工智能工具执行的任务的批准,人工智能用户必须获得 [主管/经理/人力资源指定人员] 的明确书面同意。提出请求的人工智能用户应准备好讨论使用相关人工智能工具完成工作相关任务的目的、范围和业务理由。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
人工智力现在存在于我们日常生活的许多领域中。它有望领导新的和有效的业务模型,以在私营和公共部门中有效和以用户为中心的服务。在深度学习,(深度)增强学习和神经进化技术方面的AI进步可以为人工通用智能(AGI)铺平道路。但是,AI的开发和使用也带来了挑战。数据语料库中普遍存在用于训练AI和机器学习系统的固有偏见归因于大多数这些挑战。此外,多个实例强调了在基于动力的决策中需要隐私,公平性和透明度的必要性。本书系列将为研究人员,领导者,决策者和决策者提供一条途径,以分享AI最前沿的研究和见解,包括其在道德,可解释的,可解释的,隐私的,可信赖的,可信赖的和可持续的方式中的使用。
1“在一个键AI.I.指标,中国领先于美国:人才”,《纽约时报》,访问,2024年5月25日,https://www.nytimes.com/2024/03/03/22/technology/china-ai-ai-talent.htalent.html。2艾伦,托马斯。“人工智能和国家安全”。哈佛肯尼迪学校贝尔弗科学与国际事务中心,2020年4月。3 Kania,Elsa B. “战场奇点:人工智能,军事革命和中国未来的军事力量。” 新美国安全中心,2019年11月。 4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。3 Kania,Elsa B.“战场奇点:人工智能,军事革命和中国未来的军事力量。”新美国安全中心,2019年11月。4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。4中国国务院。“新一代人工智能发展计划”。2017年7月20日。
基于铁的纳米材料(INM),由于其特殊的磁性,出色的生物相容性和功能,已在肿瘤诊断和治疗中已发展为强大的工具。我们在此处概述了诸如氧化铁纳米颗粒,元素掺杂纳米复合材料和铁基有机框架(MOFS)等INM如何显示多功能性,以改善肿瘤成像和治疗。在成像方面,INM提高了磁共振成像(MRI)和光声成像(PAI)等技术的灵敏度和准确性,并支持多模式成像平台的开发。关于治疗,INM在高级策略中起着关键作用,例如免疫疗法,磁性高温和协同组合疗法,这些疗法有效地克服了肿瘤诱导的耐药性并降低全身毒性。INM与人工智能(AI)和放射线学的整合进一步扩展了其精确肿瘤识别,治疗优化和扩增治疗监测的能力。INM现在将材料科学与先进的计算和临床创新联系起来,以实现下一代癌症诊断和治疗学。
或许可以理解为什么有些人对人工智能 (AI) 持怀疑态度。首先,媒体和研究报告经常说明机器将如何接管我们的工作,从而导致许多人目前担任的工作岗位被取代。其次,在许多情况下,AI 仍然是一个“黑匣子”。通常,在机器学习中,我们只能看到输入和输出,但不知道这些输入如何组合以达到结果。换句话说,机器以我们完全无法观察到的方式将输入转化为输出。将黑匣子算法应用于司法等公共生活的各个方面将产生深远的社会和道德影响。机器学习技术的发展正在全速前进。然而,监控和故障排除的方法却落后了。
网络钓鱼攻击涉及通过伪装成一个值得信赖的实体来获取敏感信息的欺诈尝试,已经变得越来越复杂和普遍。传统的网络钓鱼检测方法通常依赖于启发式或基于签名的技术,这可能很难与不断发展的网络钓鱼策略保持同步。本文探讨了人工智能(AI)在增强网络钓鱼检测系统中的应用。AI驱动的方法利用机器学习算法,自然语言处理和模式识别,以更高的准确性和效率来识别和减轻网络钓鱼威胁。通过分析大量数据,这些系统可以检测出可能避免常规方法的网络钓鱼尝试的微妙模式和异常。该摘要讨论了网络钓鱼检测中采用的各种AI方法,包括受监督和无监督的学习技术,集合方法和深度学习模型。此外,它研究了AI-wive系统在现实世界中的有效性及其适应新兴的网络钓鱼策略的潜力。本文以目前的挑战和该领域的研究的未来方向进行了概述,强调需要持续发展以解决网络钓鱼威胁的动态性质。
本文基于人工智能驱动的分析模型,为无人机的多学科概念设计框架提供了一个多学科的概念设计框架。这种方法利用了驱动的分析模型,其中包括空气动力学,结构质量和雷达横截面预测,以将定量数据带到初始设计阶段,从而从各种优化的概念设计中选择了最合适的配置。由于设计优化周期,为以后的设计活动提供了更准确的翼,尾部和机身等关键组件的初始尺寸。同时,生成的结构可以通过设计迭代中的反馈循环实现更合适的设计点选择。因此,除了降低设计成本外,这种方法在整个设计过程中还具有很大的时间优势。
