摘要 - 公路车辆的自动化是一种新兴的技术,在过去十年中迅速发展。自动驾驶汽车对现有的运输基础设施提出了许多跨学科挑战。在本文中,我们对自动驾驶汽车应更改其车道进行算法研究,这是车辆自动化领域中的基本问题,也是大多数“幻影”交通拥堵的根本原因。我们提出了一个预测和决策框架,称为Cheetah(自动驾驶汽车的Change Lane Smart),该框架旨在优化自动驾驶汽车的车道更改操作,同时最大程度地减少其对周围车辆的影响。在预测阶段,Cheetah从周围车辆的历史轨迹中了解了具有深层模型(气体导向模型)的历史轨迹的时空动态,并在不久的将来预测了它们相应的动作。还纳入了全球注意力机制和国家共享策略,以实现更高的准确性和更好的收敛效率。然后,在决策阶段,猎豹通过考虑速度,对其他车辆和安全问题等诸如速度,影响速度等因素,为自动驾驶汽车寻求最佳的车道更改操作。基于树的自适应梁搜索算法旨在降低搜索空间并提高准确性。为了使我们的框架适用于更多场景,我们进一步提出了改进的猎豹(Cheetah +)框架,使自动驾驶汽车适应离开道路并满足驾驶舒适性的要求。广泛的实验提供了证据,表明所提出的框架可以从有效性和效率方面提高最新技术。
与其他需要公用事业公司使用更多清洁能源但可能将其中一些成本传递给纳税人的电力部门政策相比,CEPP旨在降低客户成本。根据计划,公用事业必须将其100%的赠款用于客户和工人福利,包括直接账单援助,清洁能源和能源效率投资,以及通过能源系统的变化为工人提供支持。此外,根据该计划,公用事业的付款必须由公用事业公司的股东和所有者而不是纳税人支付。利用最佳实践的实用程序,例如全源竞争性采购,可以进一步降低电力成本。17
自动驾驶汽车(SDVS)的抽象开发人员与可能的未来有一个特定的想法。公众不得分享其基于的假设。在本文中,我们分析了英国调查(N¼4,860)和美国(n¼1,890)公众的自由文本响应,这些公众询问受访者在想到SDV时会想到什么弹簧,以及为什么应该或不应该开发它们。响应(平均每个参与者的总共27个单词)倾向于提出安全的希望,并且更常规地担心。许多受访者都提出了技术,其他道路使用者与未来之间关系的替代书籍。而不是接受一种主导的公众参与方法,该方法试图使公众从这些观点中教育,而是建议这些观点应视为社会情报的来源,并为建立更好的运输系统做出了潜在的建设性贡献。预期治理,如果要包容,则应寻求理解和整合公众观点,而不是拒绝它们是不合理的或可变的。
特别是考虑到第116/2003号补充法的附件清单,以提出质疑并提出答案,以解决其问题的答案,并在运输车辆方向通过人工智能执行的人们运输的可能性或不可能。试图汇聚两个显然是不同的知识领域,本文带来了在没有特定人的实际存在的情况下进行的任何类型的服务税的发生率,这是在没有人类的身体存在的情况下进行的,但仅通过使用I.A.- 人工智能。划定材料标准2,或者也称为“服务”的物质方面3,考虑了《联邦宪法》中有关此事的规定以及其有效的补充法(包括其附件)。同样,在交通服务的前提下,我们也寻求同时执行“合并”(甚至仅出于理论目的)。但是,前提是基于对人工智能的使用
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
- 消除公私合作伙伴关系的障碍,以加速气候行动项目,市长的信件旨在解锁绿色基础设施和可持续城市增长的急需资金。Urbanshift Africa论坛还将发布有关全球南部城市可持续财务行动和倡导的新路线图,该图案概述了市长及其团队可以开始行动并提倡气候行动的实际步骤。来自C40,Urbanshift和全球气候和能源市长盟约(GCOM)的新资源将帮助市长为清洁能源和公共交通等重要项目提供负担得起的融资。路线图(链接将于2月17日星期一1700次上线)还建议为城市提供更多的财务独立性,创建国家平台以协调努力,并将项目分组在一起,以吸引更多的投资。Freetown市长,C40城市的联合主席 Yvonne Aki-Sawyerr说:“非洲城市已经处于气候行动和创新的先锋范围内。 我们的青年人口已经在拥护气候行动并投资自己的未来。 “大约有70%的非洲人口35岁,年轻人正在利用技术,创造力和企业家精神来推动向可持续性转变。 现在是时候让国际金融界投资他们的能源和思想了。 “非洲的年轻人口意味着有足够的机会改变许多城市和许多居民的现实。Yvonne Aki-Sawyerr说:“非洲城市已经处于气候行动和创新的先锋范围内。我们的青年人口已经在拥护气候行动并投资自己的未来。“大约有70%的非洲人口35岁,年轻人正在利用技术,创造力和企业家精神来推动向可持续性转变。现在是时候让国际金融界投资他们的能源和思想了。“非洲的年轻人口意味着有足够的机会改变许多城市和许多居民的现实。“我们知道下一代已经准备好领导更绿色,更公平的未来的指控,现在,城市领导者有责任获得他们为我们所有人创造更绿色,更公平的未来所需的资源。”内罗毕州长萨卡贾·约翰逊(Sakaja Johnson)说:“我感到非常兴奋,C40决定主持绿色和韧性的Urbanshift非洲论坛,该论坛将带来非洲大陆上一些最大和领先的城市的代表到内罗毕。我们将继续利用技术和企业家精神来开发清洁能源解决方案,这些解决方案必须伴随着所有人的绿色,更公平的经济模式。“投资非洲的气候解决方案:预计最初投资的$ 1的预计回报为4美元,这是全球投资者的独特机会
环境,建立内部世界模型表示,做出决策并采取措施[9,50]。,尽管数十年来在学术界和工业上做出了巨大的努力,但他们的部署仍限于某些杂物或场景,并且不能在世界上无缝地应用。一个关键原因是在结构化自主驾驶系统中学习模型的概括能力有限。通常,感知模型会面临概括到不同环境的挑战,随着地理位置,传感器配置,天气条件,开放式对象等的变化。;预测和计划模型无法推广到具有罕见的sce narios和不同驾驶意图的非确定性期货[2,16,54]。是由人类学习如何感知和刺激世界的动机[27,28,49],我们主张采用驾驶视频作为通用界面,将其推广到具有动态期货的各种环境。基于此,首选驱动视频预测模型以完全捕获有关驾驶场景的世界知识(图1)。通过预测未来,视频预测因子本质上了解了自主驾驶的两个重要方面:世界如何运作以及如何在野外安全地操纵。最近,社区已开始采用视频作为代表各种机器人任务的观察行为和行动的接口[11]。对于诸如经典视频预测和机器人技术等领域,视频背景大多是静态的,机器人的运动很慢,并且视频的分解很低。相比之下,对于驾驶场景 - iOS,它与室外环境高度斗争,代理人涵盖了更大的动作,以及涵盖众多视图的感觉分辨率。这些区别导致了自主驾驶应用的重大挑战。幸运的是,在驾驶领域中开发视频预测模型[4、15、19、23、23、25、33、38、45、47]。尽管在预测质量方面取得了令人鼓舞的进展,但这些尝试并未像经典的机器人任务(例如,操作)那样实现概括能力,仅限于有限的场景,例如流量密度低[4]的高速公路[4]和小型数据集[15,23,33,33,33,45,45,47],或者在环境方面进行不同的条件,以使38个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异(33,45,47),以使3个条件(33,45,47)的差异[3](33,45,47),以下情况下的情况[3](33,33,45,47),这是3次差异。如何揭示视频预测模型的驾驶潜力仍然很少探索。以上面的讨论为动机,我们旨在构建一个自动驾驶的视频预测模型,能够概括为新的条件和环境。为此,我们必须回答以下问题:(1)可以以可行且可扩展的方式获得哪些数据?(2)我们如何制定一个预测模型来捕获动态场景的复杂演化?(3)我们如何将(基础)模型应用于下游任务?
作为一种广泛使用且经过验证的技术,触摸屏正在进入民用飞机的驾驶舱。作为 ACROSS(减少压力和工作量的先进驾驶舱)项目的一部分,NLR 设计了一种具有触摸交互功能的创新驾驶舱显示器,用于战术飞行控制;改变飞机的(垂直)速度、航向和/或高度。在当前的驾驶舱配置中,此自动驾驶 (AP) 功能的控件在空间上与它们调整的参数的可视化分离,从而引入了身体和精神工作量的方面。本文介绍了消除这种物理间隙并通过直接操作 (DM) 创建直观交互的人机界面 (HMI) 设计过程。DM 的特点是直接在图形对象可视化的位置对其进行操作,其方式至少与操作物理对象大致相对应。它具有高度直观性,不易出错的潜力。因此,假设 HMI 设计可以减少飞行员的工作量并同时提高态势感知 (SA)。使用 NLR 的飞行模拟器对该概念进行评估。实验结果表明,战术飞行控制设计概念具有巨大潜力,但交互实现需要进一步改进,因为它增加了飞行员的工作量,尤其是在湍流条件下。
“在2024年,政府工作报告中将商业空间列为“经济增长的新引擎”之一,这标志着该行业在如此重要的政府文档中首次出现。在今年的政府工作报告中两次提到,因为政府发誓要促进几个“新兴部门”(例如商业空间和低位航空)的安全和合理的发展。”
驾驶时急性健康变化是车辆碰撞的主要原因之一。每年在全球范围内,大约119万人死亡,在汽车碰撞(MVC)中受伤20到5000万人[1]。道路交通损伤给整个个人,家人和国家造成了巨大的经济损失;在大多数国家 /地区,成本约为国内生产总值的3%[1]。因此,世界卫生组织已建议所有政府以整体方式解决道路安全[1]。在日本,政府设定了一个安全交通社会的目标,那里没有发生碰撞,并发布了一次交通安全计划,该计划每五年修改一次。第11次交通安全基本计划始于2021年,直到2025年运行,包括具体的行为目标:2,000或更少和严重伤害22,000或以下的死亡人数。分析MVC的趋势和特征应使有效的可预防措施得以制定[2]。
