简介:不同的规划竞赛 (Long 等人 2000;Coles 等人 2012;Vallati 等人 2015) 表明,规划系统正变得越来越可扩展和高效,使其适合实际应用。由于规划的许多应用都是安全至关重要的,因此提高规划算法和系统的可信度对于它们的广泛采用至关重要。因此,目前正在做出大量努力来提高规划系统的可信度 (Howey、Long 和 Fox 2004;Eriksson、R¨oger 和 Helmert 2017;Abdulaziz、Norrish 和 Gretton 2018;Abdulaziz 和 Lammich 2018)。提高软件的可信度是一个研究得很透彻的问题。文献中尝试了三种方法 (Abdulaziz、Mehlhorn 和 Nipkow 2019)。首先,通过应用软件工程技术,例如在正确的抽象层次上编程、代码审查和测试,可以提高系统的可信度。虽然这些做法相对容易实现,但它们并不完整。其次,有认证计算,给定的程序除了计算其输出外,还要计算一个证书,说明为什么这个输出是正确的。这将可信度的负担转移到证书检查器上,证书检查器应该比要认证其输出的系统简单得多,因此不容易出错。认证计算是由 Mehlhorn 和 N¨aher 于 1998 年率先提出的,他们将其用于他们的 LEDA 库。在规划领域,这种方法是由 Howey、Long 和 Fox 率先提出的,他们开发了规划验证器 VAL(Howey、Long 和 Fox 2004)。此外,认证规划的不可解性是由 Eriksson 率先提出的,
根据其章程,AGARD 的使命是将北约国家在航空航天科学技术领域的领军人物聚集在一起,以实现以下目的: - 为成员国推荐有效的方式,以便利用其研究和开发能力造福北约社区; - 向军事委员会提供航空航天研究和开发领域的科学技术建议和援助(特别是在军事应用方面); - 不断促进与加强共同防御态势相关的航空航天科学进步; - 改善成员国在航空航天研究和开发方面的合作; - 交流科学技术信息; - 向成员国提供援助,以提高其科学技术潜力; - 根据要求向其他北约国家提供科学技术援助
PAD 使用扫描探针显微镜 (SPM) 中探针的尖端加载力和偏置脉冲来实现精确的区域控制和随后的验证成像,以从源材料的薄上层注入掺杂剂。与其他确定性掺杂技术相比,相对较大的 (20 x 20) 2-D 超晶格可以轻松形成,对半导体表面的影响最小。 PAD 的其他优势包括 (i) 无需光刻即可实现掺杂半导体的多种图案,以及 (ii) 与传统的侵入式离子注入工艺相比具有高度选择性掺杂。虽然其他确定性掺杂工艺(例如激光增强沉积和单离子按需技术)可能具有一些优势,但它们更复杂并且需要大量的设备投资 [9]。 PAD 设计和制造的自由度促进了复杂集成半导体器件的一种新型低成本识别标签的出现。由于不涉及光刻工艺,因此可以使用不同的结构和元素配置对阵列的每个元素进行唯一编程。
摘要 海上自主水面舰艇 (MASS) 正在接近现实,为海上控制系统带来了新的复杂性和关键性。在本文中,我们研究了如何使用形式化方法 (FM) 来设计和验证海上控制系统,以实现安全有效的 MASS。FM 是一系列基于数学的规范和验证方法。我们首先对 FM 进行高级介绍。我们讨论了当前的海上控制系统认证实践和走向自主化的需求。我们给出了三个具体示例,说明如何应用 FM 来满足这些需求:COLREG 的形式化规范、基于合同的设计和基于模拟的测试的自动化。最后,讨论了 FM 的一些局限性。我们得出结论,FM 似乎是满足部分自主性需求的有希望的候选者,并鼓励对 MASS 的 FM 进行进一步研究。关键词 海上自主水面舰艇、形式化方法、验证、规范、保证 简介 海上自主水面舰艇 (MASS) 正在接近现实,正在进行的项目众多,从小型研究原型到全尺寸工业船舶。虽然存在几种程度的自主性,但 MASS 的典型特点是能够在非平凡操作中独立于人类操作员运行,需要态势感知和规划能力。这些特点使得 MASS 开发人员需要新的设计方法,监管机构 (IMO 2021、NMD 2020) 和船级社 (DNV 2018) 也需要新的安全保证方法和流程。形式化方法 (FM) 是一类基于数学的规范和验证方法,源自理论计算机科学 (Woodcock 等人2009)。FM 提供高水平的保证,因此几十年来一直被积极用于其他行业(如航空航天和铁路)关键系统的开发和验证。随着自主系统的出现,FM 被认为是解决它们带来的一些保证挑战的有希望的候选者。这导致了过去十年来对应用于自动驾驶汽车和飞行器的 FM 的积极研究(Luckcuck 等人2019)。海运业尚未看到 FM 的广泛采用。然而,这种情况似乎正在改变,因为去年发表了一些文章。Shokri-Manninen 等人。福斯特等人。(2020) 创建了一个基于自动机的单船相遇正式模型,并综合了一种构造正确的导航策略。Park 和 Kim (2020) 基于可达性分析,综合了一种构造正确的船舶自动停靠控制器。(2020) 提出了一种混合动力系统形式的自主船舶控制器,并使用自动定理证明器来验证一些安全不变量。本文旨在通过首先进行高级介绍,引起海事界对 FM 的关注。接下来,我们回顾当前海事控制系统设计和验证的实践,并讨论一些走向自主化的需求。然后,我们在三个特定用例中激励并演示了 FM 的使用,以满足这些需求。最后,我们讨论一下 FM 的一些局限性。
结果 在自动驾驶模式下,仅提供带注释的数据,数据到论文便会提出假设、设计研究计划、编写和调试分析代码、生成和解释结果,并创建完整的、信息可追溯的研究论文。尽管数据到论文创建的手稿的研究新颖性相对有限,但该过程展示了从数据中自主生成从头定量见解的能力,例如揭示健康指标与临床结果之间的关联。对于简单的研究目标和数据集,完全自主的周期可以创建手稿,这些手稿可以独立概括同行评审的生物医学出版物的发现,并且在约 80% 到 90% 的情况下不会出现重大错误。然而,随着目标或数据复杂性的增加,人类的共同驾驶对于确保准确性和整体质量至关重要。通过跟踪各个步骤中的信息流,该平台创建了“数据链”手稿,其中下游结果以编程方式链接到上游代码和数据,从而为科学输出的可验证性设定了新标准。
我们提出了使用COQ证明助手编写的第一个用于量子电路的第一个完全验证的优化器。量子电路以简单的低级语言表示为程序,称为SQIR,一种简单的量子中间表示形式,它深层嵌入了COQ中。优化和其他转换表示为COQ函数,相对于SQIR程序的语义,证明是正确的。sqir使用复数矩阵的语义,这是量子计算的标准,但象征性地对待矩阵以推理使用任意数量量子位的程序。SQIR的仔细设计和我们提供的自动化使得在VOQC中编写和验证广泛的优化是可能的,包括来自尖端优化器的全电路转换。
•Qi,Lo,Lim,Siopsis,Chitambar,Pooser,Evans,Grice(2015)•Chakraborty,Leverrier(2015)•Lim,Xu,Siopsis,Christbar,Christbar,Evans,Evans,Qi(2016)•Spelman(2016)•Spelman(2016)• LXSCEQ(2016)和Allestorfer,Buhrman,Speelman,Lunel(2021): div>
熟悉 Steane 代码的读者知道,应用于每个物理量子位的按位 K 门可在逻辑数据上实现 K ∗ 。因此,乍一看,人们可能希望 K 门像 CNOT 一样,在陷阱方案下允许简单的按位小工具。不幸的是,即使底层代码允许按位实现 K 门,陷阱代码也不允许按位实现。陷阱代码的按位实现失败,因为在状态 | + ⟩ 下准备的陷阱量子位被 K 映射到 K | + ⟩ = | 0 ⟩ + i | 1 ⟩ 。处于此状态的陷阱量子位被检测为 Z 误差的概率为 1 / 2 。相反,我们需要一个更复杂的 K 魔法状态小工具,它只使用 Pauli 和 CNOT 门以及计算基础中的测量。我们的小工具是对众所周知的 π/ 8 门容错构造的简单修改。K 门的逻辑小工具如下所示。
摘要。在安全多方计算的设置中,一组政党希望共同计算其输入的某些功能。这样的计算必须保留某些安全属性,例如隐私和正确性,即使某些参与方或外部副本犯罪以攻击诚实当事方。在本文之前,所有用于一般安全计算的协议都假定当事方可以通过身份验证的渠道可靠地沟通。在本文中,我们考虑了安全计算的可行性,而无需任何设置假设。我们考虑了一个完全未经身分的设置,当事方发送的所有消息都可以被广告范围的人篡改和修改(没有诚实的当事方无法检测到这一事实)。在此模型中,无法达到与身份验证通道设置相同的安全级别。尽管如此,我们表明可以提供有意义的安全保证。特别是,我们定义了放松的概念,即“安全地计算”一个函数的含义。然后,我们构建了用于安全实现独立模型中任何功能的协议,而没有任何设置假设。此外,我们构建了普遍组合的协议,以安全地实现常见参考字符串模型中的任何功能(而仍处于未经身份验证的网络中)。我们还表明,我们的协议可用于在概念上为过去分别研究的许多问题提供概念上的简单且统一的问题,包括基于密码的身份验证的密钥交换和不可兑现的承诺。