基于深度神经网络 (DNN) 的图像配准算法中的不确定性量化在图像配准算法用于临床应用(例如手术规划、术中指导、病情进展或治疗效果的纵向监测)以及面向研究的处理流程中起着至关重要的作用。当前用于基于 DNN 的图像配准算法中不确定性估计的方法可能会导致次优临床决策,因为对于假设的配准潜在空间参数分布的配准词干的不确定性估计可能不准确。我们引入了 NPBDREG,这是一种完全非参数贝叶斯框架,用于基于 DNN 的可变形图像配准中的不确定性估计,它结合了 Adam 优化器和随机梯度朗之万动力学 (SGLD),通过后验采样来表征底层后验分布。因此,它有可能提供与分布外数据的存在高度相关的不确定性估计。我们使用来自四个公开数据库(MGH10、CMUC12、ISBR18 和 LPBA40)的 390 个图像对,证明了 NPB-DREG 与基线概率 VoxelMorph 模型 (PrVXM) 相比在脑部 MRI 图像配准方面的附加值。NPBDREG 显示预测不确定性与分布外数据的相关性更好(r > 0.95 vs. r < 0.5),并且配准准确度提高了 ∼ 7.3%(Dice 分数,0.74 vs. 0.69,p ≪ 0.01),配准平滑度提高了 ∼ 18%(变形场中的褶皱百分比,0.014 vs. 0.017,p ≪ 0.01)。最后,与基线 PrVXM 方法相比,NPBDREG 对受混合结构噪声破坏的数据表现出更好的泛化能力(Dice 得分为 0.73 对 0.69,p≪0.01)。
定量验尸磁共振成像(PMMR)允许测量脑组织的T1和T2松弛时间和质子密度(PD)。定量PMMR值可用于验证后神经成像诊断,例如计算机辅助诊断。到目前为止,常规解剖学脑结构的定量T1,T1和PD验尸值在3 Tesla PMMR应用中尚不清楚。这项基础研究的目的是评估有关各种尸体温度的3 t验尸后磁共振的验证后脑结构的定量值。在50例法医情况下,在尸检之前应用了定量的PMMR脑序列。Measurements of T1 (in ms), T2 (in ms), and PD (in %) values of cerebrum (Group 1: frontal grey matter, frontal white matter, thalamus, caudate nucleus, globus pallidus, putamen, internal capsule) brainstem and cerebellum (Group 2: cerebral peduncle, substantia nigra, red nucleus, pons, middle cerebellar花梗,小脑半球,髓质长圆形)在合成计算的轴向PMMR脑图像中进行。评估的定量值校正了尸体温度。温度依赖性主要是针对T1值的。ANOVA测试导致两组研究的解剖脑结构之间的定量值显着差异。可以得出结论,温度校正了3个TESLA PMMR T1,T2和PD值对于定期解剖学脑结构的表征和歧视是可行的。©2021由Elsevier B.V.这可能为未来的法医脑病变和病理学的先进诊断提供了基础。
验证者或奖励模型通常用于增强大语言模型(LLM)的推理性能。一种常见的方法是最好的N方法,其中LLM生成的N候选解决方案由验证者排名,并且选择了最好的解决方案。基于LLM的验证者通常被培训为判别性分类器以评分解决方案,但它们并未利用验证的LLM的文本生成能力。为了克服这一限制,我们使用无处不在的下一步预测目标提出了培训验证仪,共同核对和解决方案生成。与标准验证符相比,这种生成验证符(GENRM)可以从LLM的几个优点中受益:它们与指导调整无缝集成,启用了经过思考的推理,并且可以通过多数投票利用额外的测试时间计算来获得更好的验证。我们证明GENRM的表现优于歧视性,DPO验证者和LLM-AS-A-a-gudge,导致了最佳N的性能增长,即5%→45。算法任务的3%和73%→93。GSM8K的4%。 在易于硬化的概括设置中,我们观察到28%→44的改善。 数学的6%,37。 9%→53。 MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。GSM8K的4%。在易于硬化的概括设置中,我们观察到28%→44的改善。数学的6%,37。 9%→53。 MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。数学的6%,37。9%→53。MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。MMLU摘要代数为5%。此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。
在法医尸检中,准确估计验尸间隔(PMI)是库里的。依靠物理参数和警察数据的传统方法缺乏精度,尤其是自从该人去世以来大约两天后。新方法越来越集中于分析生物系统中的验尸代谢组学,这是受内部和外部分子影响的持续过程的“指纹”。通过仔细分析这些代谢组谱,它们涵盖了从死亡之前的事件到死后变化的各种信息,就有可能提供对PMI的更准确估计。可用真实人类数据的局限性直到最近才阻碍了全面的调查。由国家法医医学委员会(RMV,Rättsmedicinalverket)收集的大规模代谢组数据为在法医学中提供了预测分析的独特机会,从而为改进PMI估算提供了创新的方法。然而,代谢组数据似乎很大,复杂且可能是非线性的,因此可以解释它。这强调了E ff e ff使用机器学习算法来管理代谢组数据的重要性,以实现PMI预测的范围,这是该项目的主要重点。
安全协议的验证是自1990年代以来非常活跃的研究领域。安全协议无处不在:Internet(特别是用于https:// connections使用的TLS协议),WiFi,移动电话,信用卡,。。。。众所周知,他们的设计容易出错,并且未通过测试检测到错误:仅当对手试图攻击协议时,它们才会出现。因此,正式验证它们很重要。为了使安全协议形式化,需要为其数学模型。通常会考虑一个活跃的对手,可以收听网络上发送的消息,计算自己的媒介,然后将它们发送到网络上,就好像它们来自诚实的参与者一样。为了促进协议的自动验证,大多数协议验证者都考虑了加密的符号模型,也称为“ dolev-yao模型” [18,15]。在此模型中,加密原语(例如加密)被视为理想的黑盒,以功能符号为代表。消息是通过这些原始词的术语建模的;并且对手仅限于应用定义的原语。这也称为完美的加密假设:对手解密消息的唯一途径是将解密函数与正确的密钥一起使用。在这样的模型中,协议验证的主要任务之一是计算对手的知识,即对对手可以获得的一组术语。这仍然是并非繁琐的,因为该集合通常是无限的,但是它比有关斑点和概率的推理要简单得多。两个最广泛使用的符号协议验证者可能是proverif [11]和tamarin [17]。有关协议验证领域的更多详细信息,我们将读者转移到调查[10,6]。在本文中,我们专注于协议验证者proverif,可以从https://proverif.inria.fr下载。我们在下一节中介绍了王朝的概述,并关注其喇叭条款分辨率算法。
图3:生成验证者的例证,即GenRM和GenRM-Cot。给出了一个问题和候选解决方案,genRM直接对llm进行了填补,以回答“答案正确(是/否)吗?”的问题。通过sft对对应于“是”或“否”的下一步响应。在推断期间,通过提取“是”令牌(4)的概率获得验证者分数。相比,GenRM-COT FINETUNES llm在产生最终的是/否代币之前产生验证链(COT)的基本原理。在测试时间时,我们采样了多个COT理由,并使用多数投票来计算“是”的平均概率,从而使GenRM-COT能够利用其他推理计算以更好地验证。
残骸重建和一般紧固件装配过程。在一项关于航空工业点云配准的研究中,孙等[6,7]利用三维点云和测量技术开发了一套拼接飞机残骸的系统。结果表明,其粗配准精度为0.6毫米,可接受的配准精度为0.2毫米。王等[8]提出了一种用于飞机点云配准的通用密度不变框架。结果表明,与其他研究[9-11]相比,他们的方法具有更好的精度(0.6毫米——1.0毫米),以均方根误差(RMSE)评估。虽然精度有所提高,但所提出的方法适用于整个扫描飞机,而不是特定的部件。徐等[12]提出了一种紧固件装配的配准方法,其中利用局部几何特征和迭代最近点(ICP)算法。该配准方法用于扫描数据和 CAD 模型之间。结果表明,与单独使用 ICP 算法相比,所提出的方法具有更好的效率。但是,所提出的注册方法的不确定性并未披露。
根据对艺术家的口头采访和保存下来的书面资料,我们复制了历史艺术品中使用的石膏糊配方:伊朗约公元 14 世纪的 Gach-e Koshteh 和意大利约公元 15 世纪的 Gesso Sottile。我们发现,如果采用 Koshteh 方法,获得的无添加剂石膏灰泥会表现出更亲水的特性,如果采用 Sottile 方法,则会表现出更疏水的特性。这些差异是由材料晶体结构的变化引起的,在历史背景下揭示了一项惊人的技术成就。本文报告的研究结果证实,存在大量未知的技术数据,这些数据有助于开发改进的含石膏文化物品的可持续保存和修复方法。
本综述的主题是机器人中的几何配准。配准算法将数据集关联到一个公共坐标系中。它们已广泛应用于物体重建、检查、医疗应用和移动机器人定位。我们专注于需要配准点云的移动机器人应用。虽然这些算法的基本原理很简单,但已经针对许多不同的应用提出了许多变体。在这篇综述中,我们从历史的角度介绍了配准问题,并表明可以根据一些元素来组织和区分大量的解决方案。因此,我们提出了几何配准的形式化,并将文献中提出的算法投射到该框架中。最后,我们回顾了该框架在移动机器人中的一些应用,这些应用涵盖了不同类型的平台、环境和任务。这些示例使我们能够研究每个用例的具体要求以及导致配准实施的必要配置选择。最终,本评论的目的是为几何配准配置的选择提供指导。