在法医尸检中,准确估计验尸间隔(PMI)是库里的。依靠物理参数和警察数据的传统方法缺乏精度,尤其是自从该人去世以来大约两天后。新方法越来越集中于分析生物系统中的验尸代谢组学,这是受内部和外部分子影响的持续过程的“指纹”。通过仔细分析这些代谢组谱,它们涵盖了从死亡之前的事件到死后变化的各种信息,就有可能提供对PMI的更准确估计。可用真实人类数据的局限性直到最近才阻碍了全面的调查。由国家法医医学委员会(RMV,Rättsmedicinalverket)收集的大规模代谢组数据为在法医学中提供了预测分析的独特机会,从而为改进PMI估算提供了创新的方法。然而,代谢组数据似乎很大,复杂且可能是非线性的,因此可以解释它。这强调了E ff e ff使用机器学习算法来管理代谢组数据的重要性,以实现PMI预测的范围,这是该项目的主要重点。
主要关键词