Loading...
机构名称:
¥ 2.0

NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。 这款同轴性四极管车将于2028年在泰坦的火箭上发射。 在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。 自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。 本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。 该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。 首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。 然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。 使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。 在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。这款同轴性四极管车将于2028年在泰坦的火箭上发射。在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。此演示案例使用统一的流入,在114个CPU内核中评估了10,000,000个潜在的候选转子设计,并在27.8小时内使用规定的唤醒模型在27.8小时内评估了10,000个潜在的转子设计。因此,这项工作可以实现中心转子设计优化,而无需访问高性能计算。

使用机器学习应用于

使用机器学习应用于PDF文件第1页

使用机器学习应用于PDF文件第2页

使用机器学习应用于PDF文件第3页

使用机器学习应用于PDF文件第4页

使用机器学习应用于PDF文件第5页