Loading...
机构名称:
¥ 2.0

摘要:准确的瞬时电力峰值负载预测对于有效的容量计划和具有成本效益的电力网络建立至关重要。本文旨在通过采用包含各种优化和机器学习(ML)方法的模型来提高瞬时峰值预测的准确性。本研究使用多线性回归(MLR)方程来研究独立输入对峰负荷估计的影响。这项研究利用1980年至2020年的输入数据,包括进出口数据,人口和国内生产总值(GDP),以预测瞬时电力峰值负载为输出值。根据误差指标,包括平均绝对误差(MAE),均方根误差(MSE),平均绝对百分比误差(MAPE),均方根误差(RMSE)和r 2评估这些技术的有效性。比较扩展到流行的优化方法,例如粒子群优化(PSO),以及该领域的最新方法,包括蒲公英优化器(DO)和淘金热优化器(GRO)。与常规机器学习方法进行了比较,例如支持向量回归(SVR)和人工神经网络(ANN),就其预测准确性而言。调查结果表明,ANN和GRO方法会产生最小的统计错误。此外,相关矩阵表明GDP与瞬时峰负载之间存在牢固的正线性相关性。所提出的模型显示出强大的预测能力来估计峰负荷,而ANN和GRO的表现与其他方法相比表现出色。

使用优化和机器学习

使用优化和机器学习PDF文件第1页

使用优化和机器学习PDF文件第2页

使用优化和机器学习PDF文件第3页

使用优化和机器学习PDF文件第4页

使用优化和机器学习PDF文件第5页