图 4 脑年龄和观察年龄的散点图。该图报告了通过留一交叉验证获得的预测以及受试者的观察年龄。黑线代表身份线。10 次重复 10 倍交叉验证的完整散点图集如图 S5 所示
纽约,纽约州 联系人:Ronglai Shen ( shenr@mskcc.org ) 摘要 理想情况下,使用患者匹配的正常细胞样本作为基准来检测肿瘤中的体细胞突变。这样一来,就可以将体细胞突变与罕见的种系突变区分开来。在大型回顾性研究中,档案组织收集会对获取正常 DNA 样本造成挑战。在本文中,我们提出了一种在没有匹配的正常样本的情况下改进体细胞突变分析的方案。该方法的灵感来自 InterMEL 研究,这是一项大规模流行病学调查,涉及对 1000 个原发性黑色素瘤样本进行多组学、多机构基因组分析。实现改进突变调用的关键见解是种系突变应产生约 50% 的变异等位基因频率 (VAF)。虽然纯肿瘤样本中的体细胞突变也有望获得类似的 50% VAF,但通常肿瘤纯度远低于 50%,导致 VAF 明显较低。利用一种可以同时估计肿瘤纯度和 VAF 的技术,我们开发了一种更好地区分体细胞变异和种系变异的方法。基于 InterMEL 研究中 137 个黑色素瘤与匹配的正常组织来提供黄金标准,我们表明使用一组(不匹配的)正常样本的传统流程存在错误
摘要。近年来,人工智能受到越来越广泛的关注,其在人们生活的各个方面,尤其是在教育领域的应用日益增多。本研究采用半结构化访谈的研究方法,旨在探讨人工智能在提高大学生口语方面的作用,以便更好地利用人工智能促进大学生口语学习。本研究对来自中国某大学的11名学生进行了每人约10分钟的访谈,询问他们对使用人工智能学习口语的想法,并通过他们的回答了解人工智能在口语方面的发展现状。并且,对访谈结果进行内容分析发现,大多数大学生认为人工智能有助于他们的口语学习,但同时也指出人工智能还有一些方面需要改进。他们还从不同角度评估了这些人工智能应用程序对口语练习的功能。最后,本研究探讨了人工智能辅助英语口语学习的现实意义及进一步研究的建议。
摘要:非生物胁迫,主要是干旱、高温、盐碱、寒冷和涝渍,对谷物作物产生不利影响。它们限制了全球大麦的生产并造成了巨大的经济损失。多年来,人们已鉴定出大麦在各种胁迫下的功能基因,随着现代基因编辑平台的引入,抗逆性基因改良也发生了新的转变。特别是,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 是一种用于精确突变和性状改良的强大而多功能的工具。在这篇综述中,我们重点介绍了主要大麦生产国受胁迫影响的地区及其相应的经济损失。我们整理了大约 150 个与抗逆性相关的关键基因,并将它们组合成一个物理图谱,用于潜在的育种实践。我们还概述了精确碱基编辑、主要编辑和多路复用技术在有针对性性状修饰中的应用,并讨论了当前的挑战,包括高通量突变体基因分型和基因型依赖性在遗传转化中的应用,以促进商业育种。所列出的基因可以抵消干旱、盐度和营养缺乏等主要压力,相应基因编辑技术的潜在应用将为大麦改良以提高其气候适应能力提供参考。
Gridattn集成了提出的网格聚类模块,网格分配策略以及将网格恢复模块与常见的MHA相结合,以提高大型视力模型的计算效率并保持其性能,而无需重新训练或对其参数进行微调。我们对最近的高分辨率任务进行了广泛的实验,包括零摄像实例分割(SAM,Expedit-SAM),文本到图像生成(稳定扩散v2.1)和语义segmentation(segformer b0-b5)。实验表明:通过任何训练或微调,Gridattn将GFLOPS降低[4.6%,16.1%]和GPU推断潜伏期的范围[8.2%,21.4%],同时达到等效性能(绩效偏见比率低于1%)。此外,提出的实验表明,Gridattn也可以从头开始训练,也可以通过微调的微调成本进行微调,从而大大提高了性能效率 - 折衷方案。作为建议,我们鼓励社区直接部署训练有素的变压器,对预先训练的训练训练,或从头开始训练新的变压器时,将社区合并。源代码将在https://github.com/pengyulpy/gridattn中发布。
本文件规定了我们在《 2022年建筑安全法》引入《建筑安全法》之后的承诺,并从建筑安全监管机构提供指导,以确保所有住房提供商都制定了在高建筑物中建造安全的居民参与策略。普利茅斯社区住宅(PCH)希望居住在其所有高层建筑中的所有居民(包括租赁所有者,转租租户和我们自己的租户)在其家中安全,并可以选择参与建筑物的决策。
摘要:维生素 A 缺乏症是一个全球性的健康问题,对发展中国家的人们影响尤为严重。它会导致严重的健康问题,例如免疫系统虚弱和视力受损。转基因技术已成为解决这一问题的一种可能方法,通过增加大米、玉米和土豆等主食作物中的 β-胡萝卜素含量。大米、玉米和土豆是全球重要的主食作物,但缺乏维生素 A 等必需营养素。因此,科学家已成功地利用各种基因工程技术(如 CRISPR-Cas 基因编辑、基因枪转化和农杆菌介导的转化)将增强 β-胡萝卜素所需的基因插入这些作物中,从而为维生素 A 缺乏和营养不良提供了解决方案。
摘要 - 在国家航空航天及空间管理局(NASA)兰利研究中心(LARC)和马萨诸塞州技术研究所(MIT)太空资源研讨会上进行了调查,可部署空间范围内的遗产,以支持在Nasa Atae Athemis Attemis运动中垂直部署的潜力。本文报告了新的设计开发结果 - 在NASA 2020年2020年大概念挑战的原始演讲之后,对于16.5米高的,紧凑的,紧凑的自我部署的复合塔,旨在支持附近的机器人资产或人类对月球永久阴影地区的探索。可能的应用程序包括垂直太阳能数组和提供科学或工程有效载荷的高度视线,以支持附近的目标在感兴趣的领域运行,这可能很难到达。有用的高架有效载荷包括无线电中继器,遥感和成像,导航和电动束光系统。然而,尽管这些轻巧的滚动臂的高度与质量比具有出色的高度,但它们通常在部署时表现出轴向曲率,从而导致尖端质量相对于塔底座的尖端质量明显的横向侧重负载偏转。这种静态挠度随着塔的高度和尖端质量而增加,不仅限制了塔传递的值,而且危害了其完整性。要开发具有竞争性,轻巧的可部署复合动臂塔,将需要在部署期间和之后纠正静态偏转的能力。值得注意的是,自然偏转几乎完全正常地与动臂横截面的接缝完全正常,但是自然的繁荣尖端横向偏转在本文中,将为MIT / LARC自我培养的复合动型Lunar塔提供一个可部署的Guy电线稳定系统,该综合动臂Lunar塔提供实时测量,在部署期间(部署)和被动(DEPLOYMENT)保持紧张局势,并可以通过启发范围进行测试和替代稳定性船只,并可以用作可重新配置的稳定稳定性的船只,并可以作为可重新配置的平台。使用校准的摄影测量系统,记录了不同配置的动臂相对于不同部署高度处的动臂基础的自然侧向偏转。通过实时测量值,发现张紧的家伙电线可以显着减少可部署的复合动臂在死负荷下的静态尖端偏转,并且可以在一分钟的不到一分钟内抑制动态振荡。还发现,控制权是最需要的,即最接近杠杆臂,最接近偏转方向。对于至少11 m的塔高度,散布器长度至少为60厘米,所有三个臂的差分张力的解决方案均存在,并且原则上提供了足够的控制权限,以纠正或显着减少动臂尖端的偏转。
融合蛋白在大肠杆菌重组蛋白的生产中起着重要作用。它们主要用于细胞质表达,因为它们可以设计为增加目标蛋白的溶解度,然后可以通过亲和层析轻松纯化。相反,融合蛋白通常不包含在用于周质生产的构建体设计中。相反,插入信号序列以将蛋白质转运到周质中,并添加 C 端 his-tag 以进行后续纯化。我们的研究小组提出从欧洲亚硝化单胞菌周质中分离的小金属结合蛋白 (SmbP) 作为一种新的融合蛋白,用于在大肠杆菌的细胞质或周质中表达重组蛋白。SmbP 还允许通过使用 Ni(II) 离子的固定化金属亲和层析进行纯化。最近,我们通过将 SmbP 标记蛋白的天然信号肽与取自果胶酸裂解酶 B (PelB) 的信号肽进行交换,优化了 SmbP 标记蛋白的周质生产,从而大幅增加了蛋白产量。在这项工作中,我们表达并纯化了 PelB-SmbP 标记的可溶性生物活性人类生长激素 (hGH),并获得了迄今为止报道的该蛋白的最高周质产量。在 Nb2-11 细胞上测试的其活性相当于 50 ng mL 1 的商业生长激素。因此,我们强烈建议使用 PelB-SmbP 作为蛋白标签,用于大肠杆菌周质中 hGH 或其他可能的目标蛋白的表达和纯化。
图形切割广泛用于计算机视觉中。为了加快优化过程并提高了大图的可伸缩性,Strandmark和Kahl引入了一种分裂方法,将图形分为多个子图中,以在共享和分布式内存模型中进行并行计算。然而,该平行算法(平行BK-Algorithm)在迭代次数上没有多项式结合,在某些情况下,由于其子问题的多个最佳解决方案,因此在某些情况下被认为是无代数的。为了补救这个非交流问题,在本文中,我们首先引入了一种合并方法,能够合并任何相邻的子图纸,这些子图几乎无法达成对其在平行BK-Algorithm中重叠区域的一致性。基于图形切割的伪树状表示形式,我们的合并方法被证明是有效地重用这些子图中的所有计算流动。通过分裂和合并,我们进一步提出了一种动态平行和分布式图切割算法,并保证在预定义的迭代次数中与全球最佳溶液收敛。本质上,本文提供了一个通用框架,以允许采用更复杂的分裂和合并策略来进一步提高性能。我们的动态平行算法通过广泛的实验结果验证。