数据通用编号系统 (DUNS) #: 192396752 本协议由奥克兰县 (Oakland County)(一家宪法公司,地址为 1200 North Telegraph, Pontiac, Michigan 48341,简称“县”)和皇家橡树市 (City of Royal Oak)(一家密歇根州市政公司,地址为 211 Williams St., Royal Oak, MI 48324,简称“市政当局”)签订。县和市政当局统称为“双方”。 协议目的。双方签订本协议的目的是界定双方在县使用拨款资金(定义见下文)向市政当局偿还其因参与奥克兰县禁毒执法队(“NET”)而产生的加班费用方面的关系和责任,该队是奥克兰县警长办公室(“OCSO”)指导和监督下的跨辖区禁毒执法工作组。
图 8 – 样品的扫描电子显微镜图像:a) HSLA 成品;b) 含 0.66 wt.% SiC 的 HSLA;c) 和 d) 无 SiC 和 SiC 的能谱和化学成分
Harutoshi Yamada、Teruki Tsurimoto(筑波大学纯粹与应用科学研究生院)、Sirawit Pruksawan 和 Naito(筑波大学纯粹与应用科学研究生院、国家材料科学研究所)
有关安全超声暴露限值的规定是基于数量非常有限的研究,这些研究仅将听力阈值变化视为听力缺陷的指标。当前研究的目的是评估高强度超声暴露对一系列听力功能指标的影响,包括听力阈值以及听力缺陷的亚临床指标:噪声中言语理解、超阈值听觉脑干反应波 I 幅度和延迟以及对调幅 (AM) 音调的频率跟随响应水平。在一组 9 名年轻听众中,对左耳暴露于高强度超声之前和之后这些指标的变化进行了评估。这些变化与对照组 9 名年轻听众的变化进行了比较。暴露包括在每个级别上以 105、110、115 和 120 dB SPL 的水平呈现 18 40 kHz AM 音调 19 持续 10 分钟,再加上在超声波检测任务期间暴露 20 40 kHz 未调制音调,总持续时间为 50 秒。与对照组参与者相比,暴露组参与者的左耳与右耳相比,没有发现任何听力功能测量值有显著变化。在暴露于 AM 音调期间获得的脑电图记录未显示调制频率或超声音调的低频次谐波处有显著的锁相活动。九分之一的参与者能够以高于偶然水平的水平完成超声检测任务,尽管由于实验设置的限制,她能够检测到音调呈现的机制仍不清楚。35
有关安全超声波暴露限值的规定是基于非常有限的研究,这些研究只考虑了听力阈值变化作为听力缺陷的指标。本研究的目的是评估接触高强度超声波对一系列听力功能指标的影响,其中包括听力阈值,以及听力缺陷的亚临床指标:噪声中言语理解能力、超阈值听性脑干反应I波幅度和延迟,以及对调幅(AM)音调的频率跟随响应水平。在一组 9 名年轻听众中,评估了左耳接触高强度超声波之前和之后这些指标的变化。将这些变化与对照组 9 名年轻听众的变化进行了比较。暴露包括以 105、110、115 和 120 dB SPL 的级别在每个级别上呈现 10 分钟的 40 kHz AM 音调,另外在超声波检测任务中暴露于 40 kHz 未调制音调,总持续时间为 50 秒。与对照组参与者相比,暴露组参与者的左耳听力功能测量结果均未发现明显变化大于右耳。暴露于 AM 音调期间获得的脑电图形记录未显示超声音调的调制频率或低频次谐波处的显著锁相活动。九分之一的参与者能够以高于偶然水平的成绩完成超声波检测任务,尽管由于实验装置的限制,她能够检测到音调呈现的机制仍不清楚。35
“在为美国陆军进行凝胶推进剂工作之后,”Farrar 表示,“Resodyn 在各种推进剂、炸药和烟火材料的能量混合方面取得了进展。陆军还需要为关键武器系统制造爆炸材料。Resodyn 能够通过设计和制造生产规模的共振声学混合系统来满足他们的要求。该项目产生了一种创新的制造工艺,使爆炸材料的制造成本仅为原始成本的三分之一,迄今为止为军方节省了 1800 多万美元。而且它仍在服役。”
摘要 提高汽车燃油经济性标准要求开发具有优异机械性能且经济可行的钢板。淬火和分配 (Q&P) 热处理旨在产生富碳的亚稳态奥氏体,该奥氏体在变形过程中转变为马氏体,从而提高强度和延展性。在工业成型操作中,变形温度往往与环境条件不同,应变速率往往超过准静态速率 (>0.001 s -1 )。在本研究中,在 0.0001 至 0.1 s -1 的应变速率下对强度为 980 和 1180 MPa 的 Q&P 钢进行拉伸试验,同时使用热电偶和热成像评估绝热加热。扫描电子显微镜断口分析用于识别延性失效的机制,并用 x 射线衍射测量残余奥氏体以评估奥氏体转变的程度。
问题 – 高流动性铝合金和镁合金无法通过减小截面实现轻量化 – 高强度合金(A201、A206)无法压铸 目标 – 开发用于薄壁应用的高流动性合金、加工参数和模具设计方法 – 开发用于高强度合金(如 A201 和 A206)的 SSM 和挤压铸造工艺参数 优势 – 通过减轻重量、提高强度和提高生产可靠性实现更高质量/性能的部件 – 通过缩短周期时间、减少金属用量和增加模具寿命实现成本节约 – 通过增加模具寿命实现供应链可靠性 – 环境改善(降低能耗) 里程碑/可交付成果 – 薄壁合金成分和工艺参数 – 高强度铝合金加工参数 – 属性数据 – 模具和工艺设计的计算机建模方法
Iris Labadie Kyocera America, Inc. 8611 Balboa Avenue San Diego, CA 92123 电子邮件:iris.labadie@kyocera.com 摘要 钎焊是实现封装金属化和金属部件(如散热器、密封环和连接器)之间可靠粘合的关键工艺。封装的信号完整性、机械可靠性和热管理性能不仅依赖于材料的改进,还依赖于利用这些改进的制造方法。用于医疗、恶劣环境或航空航天应用的高可靠性封装需要彻底了解选择哪种制造工艺,以及夹具和材料准备,以满足高功率 GaN 和 SiC 器件运行时对更高频率下低电损耗和更高热导率的日益增长的需求。在本文中,我们将讨论利用制造设计工具和方法实现最佳钎焊。 钎焊机理和功能 钎焊是通过将一层薄薄的毛细管填充金属流入金属之间的空间来连接金属。接合是由少量母材金属溶解在熔融填充金属中而产生的紧密接触,母材金属不会熔化。术语“钎焊”用于温度超过某个值的情况,例如 450°C。术语“焊接”通常用于低于 450°C 的温度 [1]。钎焊有一个基本要求,必须满足该要求才能形成可靠的钎焊接头。为了使冶金接头可接受,填充金属必须与母材表面发生部分反应。因此,填充金属充当两个部分之间的连接。Cusil 是一种铜和银的共晶合金,是封装行业最常用的填料。这是合理的,因为它会轻微溶解镍而不会形成有害的金属间化合物。使用钎焊将金属连接到陶瓷封装和复杂模块有四个主要功能原因
但是,由于输出的是平衡、吃水和阻力,因此在某些情况下计算结果非常糟糕,在其他情况下甚至根本无法收敛到合理值。经过大量计算,确定测试中给出的 xcg 和 WA 不一致。必须通过假设垫压力在湿甲板上均匀且恒定来估计 WA,从而根据垫压力测量值进行估算。实验性 xcg 测定似乎也存在一些混淆。报告了两个 xcg;一个在空中,另一个重心在零前进速度下“悬停”在气垫上。它们是不同的,而且并不总是清楚报告的是哪一个。这些测试是在 30 年前进行的,虽然参与其中的一两个 TEXTRON 人员仍然可以提供帮助,但 xcg 问题尤其令人困惑。