未来的DOD系统需要更高的性能(例如,更高的输出功率RF设备,更高的功率处理开关晶体管和保护电路,高温晶体管)才能满足任务要求。正如SIC和GAN技术在超过传统SI和GAAS设备技术方面取得了进步一样,超宽的带盖(UWBG)半导体(例如Aln,CBN,CBN,Diamond,GA 2 O 3)显示了前一个RF和电力电子产品的希望。但是,这些材料和相关设备还处于起步阶段。本研讨会的目的是定义技术挑战并提高社区对这些挑战的认识。研讨会将包括对UWBG材料和设备的潜在应用和正在进行的研究概述,包括新的DARPA计划(UWBG幼苗,异质异质结构(H2)微电子探索计划),应用程序和研究由服务部门(Air Force,Air Force,Air Force,Air Force,Air Force,Air Force,Air Force Brange和Savy)以及广告商业的应用程序以及广告商的应用。研讨会以讨论独特的UWBG材料和设备挑战的讨论,以及有关潜在路径的建议。
1。简介:针对高性能计算(HPC)和数据中心市场的异质整合半导体设备的需求始终代表了设备和过程技术中普遍存在的最先进。这些细分市场的需求通常要求达到最高的处理率,最高的沟通速率(低潜伏期和高带宽,通常是同时同时同时使用这些)和最高的能力,并且对包装的极端要求,以满足互连需求和更高的功率散失。这是一种趋势,它很可能会随着HPC系统和数据中心的各种应用而持续,近年来已经出现了。本章合理化了对实现HPC和数据中心市场的系统集成系统集成的明确需求,并确定了潜在的解决方案以及在实现这些SIP时遇到的潜在解决方案以及短期,中期和长期挑战。异质系统集成使用多个模具及其互连实现了SIP。术语chiplet已用于描述与包装中其他此类模具(或chiplets)集成的模具。替代术语dielet也被同义用作chiplet。在本章中,这些术语可互换使用。顺便说一句,值得注意的是,chiplet一词严格意味着不一定独立的功能性芯片的一部分。在使用该术语的方式中,chiplet可以是一个完全运行的模具,例如HBM堆栈或多核CPU。在当前用途时,chiplet一词用于指代术语的严格含义,指代零件或整个功能性芯片。尽管与过去一样,处理器内存性能差距仍然是整个系统体系结构的关键驱动力,但推动HPC和数据中心市场中异质集成需求的新因素已经出现。这些包括技术局限性,新的和新兴的应用程序以及缩放需求,以克服功率耗散,功率输送和包装IO约束。这些需求及其含义将在下面检查。1.1过去的尺寸限制,技术节点(功能尺寸)一直是特定一代主流CMOS技术的代表,并且在引入后的18至24个月内,新技术超过了最新的技术。近年来,随着特征大小的缩减,一个节点实际上涵盖了几个连续的技术一代,这些技术是通过过程优化和电路重新设计在节点内实现的电路元素的缩小尺寸的特征。因此,一个节点已经开始持续数年,但实际上使缩小电路元素的扩展能够继续通过这些创新(称为“超级标准” [BOHR 17]),以相对固定的特征大小。近年来已经成立的共识是使用技术缩放度量指标,该指标代表某些基本电路元素(例如Nand Gates或Scan Flip-Flops [BOHR 17]或其他特定于供应商[LU 17])的技术规模。在使用高度尺度的情况下,必须将经典生成边界重新定义为最多的
Marigold(Tagetes Erecta L.)是该家族的一种流行的astreaceae植物,通常在包括印度在内的许多国家 /地区都因其装饰性而种植。植物在各种土壤和气候条件下很容易生长,并据报道会损害土壤的线虫种群并间接控制有害的微生物。高性能薄层色谱(HPTLC),以鉴定有两个万寿菊品种Pusa Narangi Gainda(PNG)和Pusa Basanti Gainda(PBG)的植物和叶子中一些重要的生物学活性化合物。使用硅胶薄层色谱法(TLC)板和甲苯和乙酸乙酯 - 甲酸 - 甲酸(T-E-F)(T-E-F)(13:11:2 v/v/v)进行定量分析。。结果表明,叶片中的化合物比流体更多,并且品种PNG比PBG积聚了更多的化合物。十五酸。但是,在品种PBG的流中发现了最大值。咖啡酸和槲皮素,而仅在叶片中仅检测到P-奶酪酸,仅在品种PNG的流中检测到Kaempferol。本报告中产生的信息可能有意义地用于促进对万寿菊作为抗氧化剂,杀虫剂,除草剂等自然来源的研究。
在使用Crystalcoat MP-100硬外套之前,Acrylico正在与海洋市场的玻璃窗和挡风玻璃竞争。玻璃不仅是较重的基材,而且工具过程更昂贵,需要更高的量即可破裂。开发保护较轻的塑料的技术是一个分水岭的里程碑,即使价格较高的定制者尚无法使用它。在丙烯酸挡风玻璃上运行挡风玻璃雨刮器的能力是行业的突破,在IBEX获得了2008年创新奖。”*
在宏观范围内,自然栖息地多样性是由周围环境中较大规模的变化驱动的。例如,潮间带的海岸线是支持生物多样性社区的生产生态系统,同时提供了针对气候风险的第一道防线,例如海平面上升和风暴潮。它们表现出高度的空间变化,并且在海岸线上可以找到各种栖息地,例如岩石海岸,沙滩,盐沼,泥褶和红树林。这些不同的栖息地类型响应于物理环境中的较大变化,尤其是暴露于波浪和电流的变化,在裸露的位置形成硬海岸线(例如岩石海岸线),以及在更庇护的环境中出现的柔软海岸线(例如泥flat虫和人体)(Morton&Morton,1983)。
图 5.7:输出电压 V o 中的 IHD 评估 .............................................................. 124 图 5.8:LCLC 滤波器电容器 RMS 电流的评估 ........................................................ 126 图 5.9:LCLC 滤波器简化 ...................................................................................... 127 图 5.10:电压降与电感 ............................................................................................. 127 图 5.11:LCLC 滤波器谐振峰的阻尼 ...................................................................... 129 图 5.12:LCLC 滤波器的设计空间 ............................................................................. 130 图 5.13:用于 LCLC 滤波器设计验证的 SABER 模拟波形 ............................................. 133 图 5.14:具有并联 RC 阻尼的每相双交错 LCLC 滤波器 ............................................. 134 图 5.15:V PWM1 和 V PWM2 中的高频电压谐波 ............................................................. 136 图 5.16:跨L d ................................................................... 137 图 5.17:交错式 LCLC 滤波器的电感重量与电感 ........................................ 139 图 5.18:交错式 LCLC 滤波器的电感损耗与电感 ........................................ 139 图 5.19:耦合电感设计流程 ............................................................................. 141 图 5.20:交错式 LCLC 滤波器的 L d 与 L ............................................................. 143 图 5.21:交错式 LCLC 滤波器的 CI 与 L 的重量和损耗 ........................................ 143 图 5.22:交错式 LCLC 滤波器电容器 RMS 电流的评估 ........................................ 147 图 5.23:交错式 LCLC 滤波器电压降与电感的评估 ........................................ 148 图 5.24:交错式 LCLC 滤波器的设计空间 ........................................................ 149 图5.25:交错式 LCLC 滤波器的 SABER 仿真波形 ...................................................................... 151 图 5.26:滤波器重量比较 .............................................................................................. 153 图 6.1:原型系统的转换器拓扑 ...................................................................................... 156 图 6.2:电感器构造的关键阶段 ...................................................................................... 161 图 6.3:L 1 和 L 2 的测量电感 ...................................................................................... 162 图 6.4:绕组布置和构造的耦合电感 ............................................................................. 163 图 6.5:磁性元件重量比较 ............................................................................................. 165 图 6.6:转换器的热模型 ............................................................................................. 166 图 6.7:转换器的 3D 计算机模型 ................................................................................ 168 图 6.8:原型转换器 ................................................................................................ 169 图 6.9:原型转换器的详细 SABER 仿真模型 ...................................................................................... 170 图 6.10:PWM 波形比较,V PWM1 和 V PWM2 ........................................................................ 172 图 6.11:不同杂散电感值下的 V PWM1 ...................................................................................... 173 图 6.12:V PWM1 和 V PWM2 的 FFT 比较 ............................................................................. 175 图 6.13:电流比较,I 1 和 I 2 ............................................................................................. 176 图 6.14:I 1 和 I 2 的电流过冲比较 ............................................................................................. 176 图 6.15:I 1 和 I 2 的 FFT 比较 ............................................................................................. 178 图 6.16:V d 和 I d 的比较 ............................................................................................. 179 图 6.17:V d 和 I d 的特写比较 ............................................................................................. 179 图6.18:V d 和 I d 的 FFT 比较 ...................................................................................... 181 图 6.19:V 1 、IL 和 IC 的比较 ........................................................................................ 183 图 6.20:V o 和 I o 的比较 ............................................................................................. 185 图 6.21:V o 和 I o 的 FFT 比较 ...................................................................................... 186 图 6.22:测量值和计算值的转换器损耗比较 ............................................................. 187 图 6.23:转换器重量细目 ............................................................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190................................... 186 图 6.22:测量值与计算值的变流器损耗对比 .......................................... 187 图 6.23:变流器重量细目 .............................................................. 190
摘要 数据(无论是结构化数据还是非结构化数据)的数量从四面八方涌来,随着 iCloud 作为大数据 (BD) 存储平台的扩展,我们别无选择,只能求助于集成了机器学习 (ML) 和深度学习 (DL) 子系统的人工智能 (AI) 系统。人工智能在医疗保健领域的兴起是我们近期和长期不可避免的事件。我们绝对需要人工智能,以便能够毫无疑问地在战术和战略上处理这些 BD。关键词:医疗保健、现代生活、人工智能、机器学习、深度学习、心脏病发作和中风、数据分析和预测、通用分离值 (CSV) 数据简介:在过去十年左右的时间里,人工智能 (AI) 已被人类所熟知,并且与当今的创新技术方法(例如机器学习 (ML) 和深度学习 (DL) 作为 AI 的集成子系统)相结合,为我们日常生活带来了极大的增强。人工智能 (AI) 在医疗保健应用中的兴起是不可避免的,大数据和机器学习以及随之而来的深度学习 (DL)(即参见图 1)等充分条件正在影响我们现代生活的大多数方面,从娱乐、商业、银行业、体育、网络安全、可再生和不可再生能源以及医疗保健。
雷达(L、S、C、X、Ku 波段)当今的先进雷达系统需要更强大、更强大的功能,以检测各种日益增长的全球威胁。Qorvo ® 拥有专为这些应用而设计的最大的高性能波束形成器 IC、MMIC 和分立元件产品组合。无论您想要在哪个频段运行,我们都可以提供您所需的产品和信号链专业知识,以保持领先地位。凭借最近对 Anokiwave 的收购,Qorvo 处于独特的地位,可以为客户提供独特的功能和差异化优势。通过使用集成所有核心波束控制和控制功能的硅波束形成器 IC 以及我们先进的 GaAs/GaN T/R FEM,客户可以将 RF 前端安装在辐射元件晶格内,用于降低 SWaP-C 和可观测性的平铺 X 波段低剖面天线。
马里兰州地方教育机构 (LEA) 必须遵守 HPGBP,但无需满足认证要求。HPGBP 旨在与马里兰州和联邦的其他法规、规范、标准和政策结合使用。HPGBP 由马里兰州绿色建筑委员会定期更新。当前版本已修订,以解决所引用计划和规范的当前版本,并澄清 HPGBP 豁免流程及其具体要求。HPGBP 旨在与州长于 2023 年 5 月 17 日发布的行政命令 01.01.2023.06“以身作则,引领州政府”保持一致并予以执行。该命令包括到 2031 财年将国有建筑的能源消耗与 2018 财年基线相比减少百分之二十 (20%) 的要求;并确保所有受此 HPGBP 约束的新建筑都符合该州到 2045 年实现温室气体净零排放的目标。
