在大流行时,细胞因子水平升高(尤其是IL-6,GM-CSF,TNF,IFNS和IL-18),通常在严重疾病的COVID-19患者中报告。这些细胞因子通常被描绘成对促进病毒疾病的SARS-COV-2反应失调的一部分。然而,差的患者结局与持续的病毒滴度和影响血管健康的健康状况密切相关。从未有过,皮质类固醇在管理Se-Vere Covid-19中的功效支持了这样一种观念,即免疫组合有助于疾病的严重性。IL-6水平升高与包括败血症1的多种炎症状态有关。 此外,IL-6封锁已用于管理某些癌症患者的CAR T细胞治疗后的细胞因子释放综合症2。 因此,如果住院的COVID-19患者中的IL-6封锁会减轻IL-6介导的病理学,减少全身性炎症并改善患者预后3,4,则进行临床试验以确定IL-6封锁是否会减轻IL-6封锁。 然而,尽管IL-6在Covid-19中经常被描述为促炎性细胞因子,但该描述在健康和疾病中脱离了IL-6的更广泛特性1。 IL-6在促进对不同病原体的耐药性方面具有重要作用,但也维持组织稳态1。 因此,尚不清楚IL-6在COVID-19中的主要作用是否是对病毒遏制或有助于局部免疫病理学和全身并发症1-4。IL-6水平升高与包括败血症1的多种炎症状态有关。此外,IL-6封锁已用于管理某些癌症患者的CAR T细胞治疗后的细胞因子释放综合症2。因此,如果住院的COVID-19患者中的IL-6封锁会减轻IL-6介导的病理学,减少全身性炎症并改善患者预后3,4,则进行临床试验以确定IL-6封锁是否会减轻IL-6封锁。然而,尽管IL-6在Covid-19中经常被描述为促炎性细胞因子,但该描述在健康和疾病中脱离了IL-6的更广泛特性1。IL-6在促进对不同病原体的耐药性方面具有重要作用,但也维持组织稳态1。因此,尚不清楚IL-6在COVID-19中的主要作用是否是对病毒遏制或有助于局部免疫病理学和全身并发症1-4。
随着量子硬件的快速发展,量子电路的高效模拟已变得不可或缺。主要的模拟方法基于状态向量和张量网络。随着目前量子器件中量子比特和量子门的数量不断增加,传统的基于状态向量的量子电路模拟方法由于希尔伯特空间的庞大和广泛的纠缠而显得力不从心。因此,野蛮的张量网络模拟算法成为此类场景下的唯一可行解决方案。张量网络模拟算法面临的两个主要挑战是最优收缩路径寻找和在现代计算设备上的高效执行,而后者决定了实际的效率。在本研究中,我们研究了此类张量网络模拟在现代 GPU 上的优化,并从计算效率和准确性两个方面提出了通用的优化策略。首先,我们提出将关键的爱因斯坦求和运算转化为 GEMM 运算,利用张量网络模拟的具体特性来放大 GPU 的效率。其次,通过分析量子电路的数据特性,我们采用扩展精度保证模拟结果的准确性,并采用混合精度充分发挥GPU的潜力,使模拟速度更快、精度更高。数值实验表明,在Sycamore的18周期情况下,我们的方法可以将随机量子电路样本的验证时间缩短3.96倍,在一台A100上持续性能超过21 TFLOPS。该方法可以轻松扩展到20周期的情况,保持相同的性能,与最先进的基于CPU的结果相比加速12.5倍,与文献中报道的最先进的基于GPU的结果相比加速4.48-6.78倍。此外,本文提出的策略对
Irvine, California and Wolfsburg, Germany, November 12, 2024: Rivian Automotive (NASDAQ: RIVN) and Volkswagen Group (XETRA: VOW / VOW3) entered into a transaction agreement to create their new joint venture (JV) – “Rivian and VW Group Technology, LLC”, known as Rivian and Volkswagen Group Technologies - with a total deal最高58亿美元的规模,预计将于11月13日开始。通过这支合资公司,公司计划为两家公司的未来电动汽车带来下一代电气架构和一流的软件技术,涵盖包括亚型汽车在内的所有相关车展。这是反映Rivian行业领先的软件和电气硬件技术的高度互补性,以及大众集团的重要全球规模和行业领先的车辆平台能力。
选择性离子分离对水净化、储能和环境修复等各种行业都至关重要。在新兴技术中,氧化石墨烯 (GO) 功能化膜因其独特的结构和性能而表现出色且意义重大。GO 是石墨烯的衍生物,其表面具有含氧官能团,可用于控制离子传输并增强选择性。本文探讨了 GO 功能化膜在离子分离中的开发和应用,重点介绍了它们的优势、挑战和未来研究方向。
“分析临床基因组数据以前并不是 HPC 系统的经典应用领域。RAMSES 改变了这一现状 — 在整个计算过程中采用端到端加密,并采用目前在德国独一无二的定制系统架构。NEC 在研究合作中设计并交付了针对该应用领域定制的系统架构和操作模型,我们很高兴能与 NEC 成为长期值得信赖的合作伙伴,提供高质量的硬件、软件和服务。”
p53 被称为基因组的守护者,是最重要的肿瘤抑制因子之一。它在大多数肿瘤中处于失活状态,这是通过肿瘤蛋白 p53 (TP53) 基因突变或关键负调节因子(例如小鼠双微分 2 (MDM2))的拷贝数扩增实现的。与 MDM2 蛋白结合并破坏其与 p53 相互作用的化合物可恢复 p53 肿瘤抑制因子活性,从而促进细胞周期停滞和凋亡。先前使用 MDM2–p53 蛋白–蛋白相互作用拮抗剂 (MDM2–p53 拮抗剂) 的临床经验表明,血小板减少和中性粒细胞减少代表可能限制其治疗效用的靶向剂量限制性毒性。降低给药频率同时保持有效暴露是减轻毒性和改善 MDM2–p53 拮抗剂治疗窗口的一种方法。然而,要实现这一点,需要一种具有优异效力和理想药代动力学特性的分子。在这里,我们介绍了一种新型、在研螺环氧吲哚 MDM2-p53 拮抗剂 brigimadlin (BI 907828) 的发现和表征。Brigimadlin 在临床前模型中表现出高生物利用度和暴露量,以及剂量线性药代动力学。Brigimadlin 治疗恢复了 p53 活性并导致 TP53 野生型、MDM2 扩增癌症临床前模型中的细胞凋亡诱导。以间歇给药方案口服 brigimadlin 在几种 TP53 野生型、MDM2 扩增异种移植模型中诱导了强效的肿瘤生长抑制。探索性临床药代动力学研究 (NCT03449381) 表明,接受口服布吉马林的癌症患者的全身暴露量高,血浆消除半衰期长。这些发现支持继续
摘要 通过在具核梭杆菌中创建框内缺失突变来使基因失活非常耗时,并且大多数具核梭杆菌菌株在遗传上是难以处理的。为了解决这些问题,我们引入了一种基于核糖开关的可诱导 CRISPR 干扰 (CRISPRi) 系统。该系统采用核酸酶失活的化脓性链球菌 Cas9 蛋白 (dCas9),通过持续表达的单向导 RNA (sgRNA) 特异性地引导至目的基因。从机制上讲,这种 dCas9-sgRNA 复合物成为 RNA 聚合酶难以逾越的障碍,从而抑制了目标基因的转录。利用这个系统,我们首先研究了两个非必需基因 ftsX 和 radD,它们对于具核梭杆菌的胞质分裂和共聚集至关重要。添加诱导剂茶碱后,ftsX 抑制导致类似于染色体 ftsX 缺失的丝状细胞形成,而靶向 radD 则显著降低 RadD 蛋白水平,消除 RadD 介导的共聚集。随后将该系统扩展到探测必需基因 bamA 和 ftsZ,这两个基因对于外膜生物合成和细胞分裂至关重要。令人印象深刻的是,bamA 抑制破坏了膜完整性和细菌分离,阻碍了生长,而 ftsZ 靶向会在肉汤中产生细长的细胞,并且琼脂生长受到损害。对 F. nucleatum 临床菌株 CTI-2 和 Fusobacterium periodonticum 的进一步研究表明,靶向 tnaA 时吲哚合成减少。此外,沉默 F. periodonticum 中的 clpB 会降低 ClpB,从而增加热敏感性。总之,我们的 CRISPRi 系统简化了各种梭杆菌菌株的基因失活。
osapiens 支持来自不同行业的全球公司在其组织内建立可持续性并为未来做好准备。为了实现这一目标,osapiens 开发了整体软件即服务解决方案,以在整个价值链上创造透明度和可持续增长,满足法律 ESG 要求并实现手动流程自动化。osapiens 的目标不仅是增强公司的经济实力,而且还要促进人权和生态可持续和负责任的公司治理作为全球标准。
细胞因子参与免疫细胞的多种行为。全身给药细胞因子可以引发或增强某些癌症患者的抗肿瘤反应。不幸的是,细胞因子的外源添加带来了各种挑战,例如增加了细胞因子释放综合征(CRS)的风险。在船上,膜螺旋细胞因子不仅可以减轻外源性细胞因子的毒性风险,而且还可以克服其他局限性,包括短期半寿命和较差的组织渗透。但是,船上细胞因子的效力提高不得损害工程细胞的治疗窗口。这在介导肿瘤特异性杀伤的逻辑门(例如Lir-1)的产品中尤其重要。在这里,我们表明,在各种急性和长期肿瘤共培养分析中,在体内研究中,膜束缚的IL-12(MEM-IL-12)在不阻碍选择性的情况下增强了TMOD的效力。