生物质原料的价值化(例如涉及 5-羟甲基糠醛和甘油的氧化还原反应)也已被用于生产高价值燃料和化学品。3,4 电化学转换方案比传统的热方案有几个优势,包括(i)可在室温和常压下操作,5 (ii) 高度分布的基础设施,(iii) 在氢化反应中使用丰富的 H 2 O 分子代替昂贵的 H 2 和 (iv) 能够对所需产物实现高选择性,防止产生浪费/有毒的副产物。开发具有高内在活性和对所需产物的选择性的地球丰富且稳定的电催化剂对于广泛实施电化学能量转换方案至关重要。我们社区使用两种常见策略来提高电催化系统的活性:(a)通过增加催化剂负载或中观/纳米结构(通常称为粗糙化)来增加活性位点的数量和(b)发现/设计具有更高内在活性的新活性位点。前一种策略(a)的挑战是(1)催化剂在更宽的电极上的分布会导致质量传输的额外限制,(2)增加现有贵金属催化剂的负载会导致成本增加,以及(3)增加负载只能将几何活性提高最多三个数量级。6因此,提高电催化剂的内在活性是
摘要:环境保护的需求推动了可再生能源的大规模引入。尽管风能和太阳能是目前最成熟的发电技术,但波浪能每年仍有巨大的能源潜力尚未开发。事实上,目前还没有开发出用于波浪能转换的领先设备。因此,未来波浪能的开发将与特定的配电和输电基础设施密切相关,由于波浪能的随机性,这些基础设施必须满足高要求才能保证电网的安全性和稳定性。为此,本文介绍了一种基于公共直流母线拓扑的电气架构模型,其中包括由锂离子电池和飞轮与波浪能转换器耦合组成的混合储能系统 (HESS)。具体来说,这项研究工作旨在研究在特定的压力生产条件下,HESS 在公共耦合点 (PCC) 引入的电压和电流波形频率以及瞬态行为方面的有益影响。具体而言,在定义的模拟场景中,结果表明,PCC 处的电压波频率峰值降低了 64% 至 80%,与没有存储的情况下相比,HESS 的稳定速度更快,在更短的时间内(-10% 至 -42%)达到设定值(50 Hz)。因此,在波浪能转换器中集成 HESS 可以大大减少与间歇性和波动性波浪生产有关的主电网安全性和稳定性问题,从而显著提高对可再生能源电力预期增长份额的容忍度。
全球新冠疫情使每个人都迫切需要在线获取和理解健康信息。同时,互联网,尤其是社交媒体平台上产生了大量信息/错误信息/虚假信息,从而引发了信息疫情。新冠疫情这场公共卫生危机对每个人和整个社会都进行了考验:在疫情期间,需要什么样的电子健康素养才能从在线资源中获取准确的健康信息并抗击信息疫情?本文旨在总结提高传染性疾病(如 COVID-19)和非传染性疾病(如癌症、阿尔茨海默病和心血管疾病 (CVD))的电子健康素养的意义和挑战。此外,本文将提出基于人工智能的提高电子健康素养和抗击信息疫情的总体框架建议,包括人工智能增强的终身学习、人工智能辅助翻译、简化和总结以及基于人工智能的内容过滤。这种基于人工智能的提高电子健康素养和抗击信息流行病的方法的总体框架具有将正确的在线健康信息匹配给正确的人的优势。
作者的完整列表:萨斯加,1月;加州大学戴维斯分校,尼古拉的化学Shevchenko;加州大学戴维斯(UC Davis),化学Gonel,Goktug;加州大学戴维斯分校,Zaira化学工程贝德拉·瓦尔迪斯(Bedolla Valdez);加州大学戴维斯分校,雷切尔化学工程系;加州大学戴维斯分校,化学工程与材料科学Moule,亚当;加州大学戴维斯分校,化学工程和材料科学马斯卡,马克; UC Davis,化学
近年来,高精度感测和高质量的交流对综合电路的运行频率施加了巨大的要求,从W波段到G频段到G频段甚至Terahertz,这一频率增加了。[1,2]采用了多种技术来扩展摩尔法律并证明设备的频率特征,例如新型结构[3,4]和制造技术。[5]基于INP的高电子迁移式晶体管(HEMTS)具有降级的高载体板密度,峰值漂移速度和低轨道迁移率,并且记录的频率特性已超过1 THz。[6]因此,它们被认为是即将到来的THZ卫星通信和深空检测系统的功率放大器(PAS)和低噪声放大器(LNA)的有前途的候选者。[7 - 10]
摘要。本文分析了在乌兹别克斯坦使用风能的可能性,并研究了使用储能设备在该地区建造可靠的电力供应的可能性。在风弱的区域中,已经提出了首先存储风能然后产生交替电力的设备。已经分析了储能系统,建议在乌兹别克斯坦共和国可再生能源组成的能源系统中使用机械能量存储系统。已经注意到,此类设备在远离集中电源的区域特别有效,那里的电源不可用或可靠性较低。使用存储系统中的弹性绳编织的机械能量存储设备的实验模型,并给出了其设计方程式。使用此存储系统的可能性和必要性在我国高度重视。尽管设备的原始模型的功率很低,但可以通过在该区域进行研究并改变弹性线的类型和组成来实现高结果。本文介绍了有关使用机械弹性绳索开发机械能量存储设备新设计的初步研究结果。
我们的分销分支机构 Milton Ross Composants 除我们自己的陶瓷生产外,还可以通过与专业制造商(主要是欧洲)合作,提供全系列(钽除外)电容器(薄膜、电解)和电阻器(厚膜、薄膜、线绕),提供相同的高价值产品、高电压、高精度、大值、定制产品,并且始终具有最短的交货时间。
安全在医疗保健领域发挥着重要作用。防止对医疗保健基础设施的网络攻击已不再是微不足道的事情。任何电子医疗系统的安全性受损都可能对患者的健康造成严重损害。特别是在远程护理环境中,保护患者的远程监控系统至关重要,以确保他们遵循临床路径而不受任何外部入侵。人工智能 (AI) 在打击针对患者远程监控系统安全的网络攻击方面发挥着重要作用 [1、2、3]。监控和防止医疗保健网络攻击的系统不仅必须检测到攻击,还应该能够正确理解并向用户报告攻击。特别是,异常检测系统是一种著名的方法,它基于机器学习 (ML) 或深度学习 (DL) 方法对正常活动进行建模,以便以数据驱动的方式轻松检测到与标准的异常偏差。因此,在这样一个涉及多位医疗专业人士的敏感领域,除了检测威胁之外,通过适当的可解释性算法来表示和解释威胁也至关重要 [ 4 ]。此外,当前的检测模型和规则还不够成熟,无法识别尚未造成任何损害的早期入侵。入侵分析师利用先验知识推断事件背景,以发现事件
近年来,通过缩减包括芯片互连的各种设备组件来缩放各种设备组件,已经满足了对集成电路较高性能的增长需求。然而,随着在微型互连中使用常规金属(例如铜)变得越来越具有挑战性,因此对具有高电导率和分解电流密度的替代互连材料的兴趣越来越大。在这里,我们证明了单层Ti 3 C 2 t X的分解电流密度非常高,这是一种二维过渡金属碳化物(称为MXENES)的材料,它超过了铜和其他常规金属的这种特性。在Ti 3 C 2 t X中发现的高电导率和分解电流密度的显着组合扩展了MXENES对微电子的潜在应用的令人印象深刻的列表,并保证对大型MXENE家族的其他材料进行研究,其中一些可能具有更好的特征。