预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2023年9月8日发布。 https://doi.org/10.1101/2023.03.01.530588 doi:biorxiv Preprint
此预印本的版权持有人(该版本发布于2023年5月12日。; https://doi.org/10.1101/2023.01.27.525966 doi:biorxiv Preprint
摘要:环境压力源可以破坏微生物群与宿主之间的关系,并导致其功能的丧失。包括烈膜病的气管菌引起的细菌感染是雌激素的病因,导致鲑鱼水产养殖的死亡率很高。在这里,使用16s rrna sequercct的V1 – V3区域,在6和72 h感次染色(HPI)(HPI)(HPI)时,在6和72 h的感染(HPI)(HPI)时,对salmonicida achromogenes及其对菌群分类学组成和结构的影响进行了对分类学组成和结构的影响。通过qPCR评估了病原体和免疫基因反应的感染。我们的结果表明,α-多样性是高度多样的,但占主要分类单元的主导,而β多样性在6小时后在g的感染中很早就受到了影响,随后影响了皮肤和尾骨的微生物群。也鉴定出了微生物群的营养不良和已知为机会病原体(Aeromonas,pseudomonas)的属增加。此外,在鳟鱼头肾脏中观察到促炎细胞因子和毒力蛋白阵列(VAPA)的增加,直到6 hpi升高,直到72 hpi直到72 hpi,而抗渗透基因似乎被压抑。这项研究表明,在感染后几个小时,salmonicida achromogenes的感染可以改变ill的菌群。此结果对于开发一种非侵入性技术可能是有用的,以防止水产养殖中的疾病爆发。
摘要:斑马鱼是基础和翻译研究中最广泛采用的动物模型之一。斑马鱼的这种流行是由于几个优点,例如与人类基因组相似的高度,遗传和化学扰动的易感性,具有高繁殖力,透明且快速发展的胚胎的外部受精,以及相对较低的成本效率。尤其是人体半透明是斑马鱼的独特特征,它不能与其他脊椎动物生物充分获得。动物的独特光学清晰度和小尺寸使其成为光学调制和观察的成功模型。更重要的是,显微注射和高胚胎通透性的便利性易于使大小分子有效地递送到活动物中。最后,从一对动物获得的众多兄弟姐妹提供了大量重复和改进结果的统计分析。在这篇综述中,我们描述了基于各种策略的光化学工具的开发,这些分层以前所未有的时空分辨率控制生物学活性。我们还讨论了这些工具在斑马鱼中的应用,并强调了光化方法的当前挑战和未来的可能性,尤其是在单细胞水平上。
•首先,可能会刺激现有肌纤维中的差异化CMS,以进入细胞周期,分裂和改革顶点。•第二,可以通过募集形成新的增生性CM的未分化的祖细胞来进行再生。•关于再生肌肉起源的第三个可能的机制是这两种称为“去分化”的机制的嵌合体,其中现有肌肉将下调收缩基因以创建未分化或不良分化的细胞。
1 密歇根大学计算医学与生物信息学系,密歇根州安娜堡,美国 2 密歇根大学儿科系,密歇根州安娜堡,美国 3 美国国家心肺血液研究所内部研究部人口科学分部,73 Mt. Wayte, Suite #2, Framingham, MA, 01702, 美国 4 斯坦福大学医学院血管外科分部,加利福尼亚州帕洛阿尔托,94305,美国 4 密歇根大学内科系,密歇根州安娜堡,美国 6 密歇根大学内科系心血管医学分部,密歇根州安娜堡,美国 7 挪威科技大学 NTNU 公共卫生与护理系 KG Jebsen 遗传流行病学中心,特隆赫姆,7030,挪威 8 挪威科技大学公共卫生与护理系 HUNT 研究中心,挪威科技大学,挪威勒万厄尔 7600 9 特隆赫姆大学医院圣奥拉夫医院医学诊所,挪威特隆赫姆 7030 10 波尔多大学,法国国家健康与医学研究院,波尔多人口健康研究中心,UMR 1219,F-33000 波尔多,法国 11 迈克尔·克雷森茨下士 VA 医学中心,美国宾夕法尼亚州费城 12 宾夕法尼亚大学佩雷尔曼医学院外科系,美国宾夕法尼亚州费城 13 宾夕法尼亚大学佩雷尔曼医学院遗传学系,美国宾夕法尼亚州费城 14 华盛顿大学生物统计学和医学系心血管健康研究组 15 格罗宁根大学,UMCG,眼科系,荷兰格罗宁根
该预印本版的版权持有人于2021年10月13日发布。 https://doi.org/10.1101/2021.10.12.464038 doi:Biorxiv Preprint
摘要:充满活力和气候危机应该对科学家在可再生绿色能源领域中找到解决方案的挑战。在超过二十年的时间里,寻找能源行业的新机会使人们可以观察到氢作为能源的潜在使用。科学家为了将其用作能源而面临的最大挑战之一是设计安全,可用,可靠和有效的氢存储形式。此外,要存储氢的方式密切取决于这种绿色能源的潜在用途。在固定用途中,目的是实现容器的高容量密度。但是,从移动应用的角度来看,一个极为重要的方面是使用相对较高密度的轻质储罐的储存。这就是为什么,科学家的重点已放在碳基材料和石墨烯作为H 2存储领域中的视角解决方案的原因。本综述着重于对氢存储的不同方法的比较,主要基于碳基材料,并专注于使用石墨烯及其不同形式的有效材料,以在未来的H 2基于H 2的经济中达到目的。
摘要虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍缺乏一种有效的方法来产生高效率的精确点突变。在这里,我们表明基本编辑者可以在没有其他不必要的靶向突变的情况下生成具有高效率的C-T点突变。此外,我们还建立了一个新的编辑变体,以识别NAA原始探针相邻基序,从而扩大了斑马鱼中的基本编辑可能性。使用这些方法,我们首先在CTNNB1基因中产生了基本变化,模仿了已知的人类基因的突变,从而导致内源性Wnt信号传导的组成型激活。此外,我们精确地针对了包括癌症相关的几个基因,包括CBL。使用了最后一个目标,我们创建了一个新的斑马鱼矮人模型。一起,我们的发现扩大了斑马鱼作为模型系统的潜力,允许新的方法调节细胞信号通路和人类遗传疾病相关突变的精确模型的生成。
抽象蛋白质相互作用网络对于复杂的细胞过程至关重要。然而,在高度专业的细胞和组织中阐明发生的蛋白质相互作用具有挑战性。在这里,我们描述了整个斑马鱼中依赖性生物素标记的新方法的开发和应用。使用有条件稳定的GFP结合纳米病毒将生物素连接酶靶向感兴趣的GFP标记的蛋白,我们使用现有的GFP标记的转基因斑马鱼线显示了组织特异性的蛋白质组学分析。我们证明了这种方法的适用性,称为Blitz(标记的斑马鱼中的生物素标记),在不同的细胞类型(如神经元和血管内皮细胞)中。我们应用了这种方法来识别骨骼肌中洞穴外套蛋白的相互作用。使用此系统,我们为密切相关但功能上不同的cavin4和cavin1蛋白定义了体内肌肉细胞内的特定相互作用网络。