会议报道:从科幻到现实,脑机接口如何连接 AI 与人类智慧? “《黑客帝国》在某种意义上描绘了脑机接口的终极目标:向大脑输入一个完整 的虚拟外部环境并与之双向交互。”上海科技大学生物医学工程学院常任轨助理 教授、计算认知与转化神经科学实验室主任李远宁说道。 近日,由天桥脑科学研究院(中国)主办的“从科幻到现实——人类智能如何与 人工智能融合?”主题活动在上海图书馆东馆举行。 活动上,李远宁与知名科幻作家,银河奖、全球华语星云奖金奖得主江波展开了 跨越科幻与科学的对谈,将脑机接口( Brain Computer Interface , BCI )这项从小 说走向现实、不断引爆学界和产业界热点的技术进行了生动演绎,探索脑机接口 与 AI 融合的无限可能,并客观阐释了从令人遐想的突破性个例到广泛应用的距 离。 脑科学是人类所知甚少的“自然科学最后一块疆域”,也是科幻作品经久不衰的 灵感来源。今年以来,天桥脑科学研究院(中国)发力 AI for Brain Science ,鼓励 AI 和脑科学这两个“黑匣子”互相启发、互相破译。 一方面,研究院已组织了六场 AI for Brain Science 学术会议,促进 AI 科学家、神 经科学家、临床医生、产业界专家和高校年轻学生学者同台共话,分享 AI for Brain Science 相关基础研究和健康应用,系列会议大众总观看 52 万人次,参会领域专 家 800 余人;另一方面,研究院也积极组织“ AI 问脑”系列科普会议,邀请 AI 科 学家、脑科学家展开跨界对谈,激发公众对 AI for Brain Science 的兴趣和探索。 点击此处阅读原文
同时,它将卷积神经网络与传统方法相结合,以基于短时傅立叶变换和连续小波变形的特征提取方法提出特征提取方法。卷积神经网络分类算法使用特征提取算法来提取时间频率特征来制作时间频率图,并使用卷积网络来快速学习分类的功能。测试结果表明,该算法在运动图像脑电图公共数据集中的精度为96%,而自制数据集的精度率约为92%,这证明了算法在运动成像EEG分类中的可行性。
研究文章:方法/新工具| Novel Tools and Methods Whole-brain mapping in adult zebrafish and identification of the functional brain network underlying the novel tank test https://doi.org/10.1523/ENEURO.0382-24.2025 Received: 30 August 2024 Revised: 10 January 2025 Accepted: 13 January 2025 Copyright © 2025 Rajput et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
摘要:成人神经发生是所有脊椎动物中发生的进化保守过程。然而,考虑到构成和损伤引起的条件下的神经源性壁ni,神经干细胞(NSC)身份,神经干细胞(NSC)身份以及大脑可塑性之间观察到明显的差异。斑马鱼已成为研究成人神经发生涉及的分子和细胞机制的流行模型。与哺乳动物相比,成年斑马鱼显示出大脑分布在整个大脑中的大量神经源性壁ni。此外,它表现出强大的再生能力,没有疤痕形成或任何明显的残疾。在这篇综述中,我们将首先讨论有关(i)成年斑马鱼和哺乳动物(主要是小鼠)和(ii)主脑脑脑壁iches中神经干细胞的性质的神经源性壁ches的分布。在第二部分中,我们将描述斑马鱼和小鼠端脑损伤后发生的一系列细胞事件。我们的研究清楚地表明,大多数早期事件发生在斑马鱼和小鼠之间,包括细胞死亡,小胶质细胞和少突胶质细胞募集,以及损伤引起的神经发生。在哺乳动物中,受伤后的后果之一是形成了持续存在的神经胶质疤痕。在斑马鱼中不是这种情况,这可能是斑马鱼表现出更高再生能力的主要原因之一。
这项工作得到了内蒙古自治区的自然科学基金会项目(编号2019MS08024)抽象非小细胞肺癌(NSCLC是最常见的组织学肺癌类型,在诊断时约有66%的患者中与远处转移有关。大脑是转移的常见部位,在初始诊断时,大约13%的患者在颅内受累。这严重影响了生活质量,并导致预后不良。驱动基因阳性NSCLC脑转移患者的靶向治疗可实现更好的颅内控制率;但是,使用驱动基因阴性NSCLC脑转移的患者的治疗选择有限。近年来,随着免疫疗法的扩展,免疫检查点抑制剂(ICI)已被广泛用于临床实践。ICI与放射疗法结合的治疗方式在治疗驱动基因阴性NSCLC脑转移的患者方面有望。本文回顾了敏感驱动器基因阴性NSCLC脑转移患者的放射治疗与免疫疗法的临床研究进度,目的是为可用的临床治疗方案提供参考。
该指南本指南将食用鱼类的好处通知个人,并指定要以有限数量的鱼类食用或由于环境污染物而不吃东西。鱼是高质量蛋白质,“心脏健康”脂肪酸的良好来源,如果经常食用,会导致健康饮食的必需营养素。鱼的胆固醇和饱和脂肪也很低。许多密苏里鱼类具有omega-3脂肪酸,这对中枢神经系统的发展至关重要,可能有益于减少心脏病。所有鱼都包含一些(通常很少)的化学污染物。在大多数情况下,对于大多数人来说,吃鱼的健康益处超过了污染物的潜在风险。但是,某些情况下,某些鱼类的消耗是适当的。为了评估鱼类污染物的潜在健康风险,DHSS与密苏里保护局(MDC),密苏里州自然资源部(DNR)(DNR)和其他政府机构合作。DHSS基于MDC和DNR在密苏里州各种湖泊,池塘,河流和溪流的广泛的年度鱼类组织研究咨询基础上。DHSS使用最新的科学来制定密苏里州的合理,保守的消费指南。本指南并非旨在阻止您吃鱼;相反,它应该有助于您做出明智的决定,从密苏里州的众多水体中吃鱼。DHSS建议所有消费者都意识到食用鱼的积极好处以及在鱼类中可能发现的污染物的潜在不良健康影响。请访问DHSS鱼类咨询网页,以获取Health.mo.gov/fishadvisory,以获取其他信息,教育材料和儿童活动。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。