当前的最新对象识别模型主要基于会议神经网络(CNN)架构,这些架构是受灵长类动物视觉系统的启发。然而,这些CNN可以被严重的小型,明确的精心制作的扰动而愚弄,并难以识别被人类易于认可的损坏的图像中的物体。在这里,通过与灵长类神经数据进行比较,我们首先观察到具有神经隐藏层的CNN模型更好地匹配灵长类动物的一级视觉皮层(V1),也对广告症的攻击也更为强大。受到这一观察的启发,我们开发了Vonenets,这是一种新的混合CNN视觉模型。每个vonenet都包含一个固定的权重神经网络前端,该vonnet模拟灵长类动物V1,称为VoneBlock,然后是由当前CNN视觉模型改编的神经网络后端。voneBlock基于V1的经典神经科学模型:线性 - 非线性 - 偏见模型,由生物学上约束的Gabor滤波器库组成,简单且可构成细胞的非线性和V1 Neuronal neuronal neuronal stochasticity生成器。训练后,Vonenets保留了较高的ImageNet性能,但每种表现都更高,在由白色盒子对抗性攻击和常见的图像腐败组成的扰动的基准上,分别超过了CNN和最先进的方法,分别超过了18%和3%的基本方法。最后,我们证明了VoneBlock在协同作用中的所有组成部分都可以提高鲁棒性。虽然当前的CNN体系结构可以说是受到脑部启发的,但此处介绍的结果表明,更精确地模仿灵长类动物视觉系统的一个阶段会导致Imagenet级计算机视觉应用中的新增长。
深度学习已被证明是医学图像分析的重要工具。但是,需要准确标记的输入数据,通常需要专家的时间和劳动密集型注释,这是对深度学习使用的主要限制。解决这一挑战的一种解决方案是允许使用粗或嘈杂的标签,这可以允许图像的更有效,可扩展的标签。在这项工作中,我们根据熵正则化开发了偏斜的损失函数,该熵正规化假定目标注释中存在非平凡的假阴性率。从经过精心注释的脑转移病变数据集开始,我们通过(1)随机审查带注释的病变,并系统地审查最小的病变,从而用假阴性模拟数据。后者更好的模型真正的医师错误,因为较小的病变比较大的病变更难注意到。即使模拟的假阴性率高达50%,将我们的损失函数应用于随机审查数据的最大敏感性在基线的97%(未经审查的培训数据)下保留,而标准损失函数仅为10%。对于基于尺寸的审查制度,绩效从当前标准的17%恢复为88%,而我们的自举损失损失。我们的工作将与图像标记过程的更有效的缩放相同,并与其他方法并行,以创建更多效果的用户界面和注释工具。关键字:脑转移,细分,深度学习,假阴性,嘈杂标签
随机抽样是现代算法,统计和Ma-Chine学习中的基本原始性,用作获取数据的较小但“代表性”子集的通用方法。在这项工作中,我们研究了在流式设置中对自适应对手攻击的鲁棒性:对手将宇宙U的一系列元素传递到采样算法(例如Bernoulli采样或储层采样),并以“构成非常无用的”效果'nesprestation's repressented'nesperate'nesprestanter''对手是完全自适应的,因为它知道沿流的任何给定点的样本的确切内容,并且可以以在线方式选择下一个相应地发送的元素。静态设置中的众所周知的结果表明,如果提前选择完整的流(非适应性),则大小ω(d /ε2)的随机样本是具有良好概率的完整数据的εApproximation,其中D是d是基础设置系统的VC-dimension(u,r)。此样本量屈服于适应性对手的鲁棒性?简单的答案是负面的:我们演示了一个设定的系统,其中恒定样本大小(对应于1个的VC维度为1)在静态设置中,但是自适应对手可以使用简单的和易于实现的攻击。但是,此攻击是“仅理论上的”,要求设定的系统大小至(本质上)在流长中指数。这几乎与攻击施加的约束相匹配。这不是一个巧合:我们表明,为了使采样算法与自适应对手进行鲁棒性,所需的修改仅是在样本大小中替换VC差异项D中的VC差异项D,并用基数期限log | r |替换。 。也就是说,具有样本尺寸ω(log | r | /ε2)的Bernoulli和储层采样算法,即使在存在自适应对手的情况下,也有良好的可能性输出流的代表性样本。