摘要:这项研究旨在研究抗碳青霉培养素的生物膜产生能力鲍曼尼(Baumannii)(CRAB)(CRAB),70%乙醇和0.5%钠次氯酸钠的生物膜膜片潜力在生物膜产生和细菌基因型之间。测试了总共111个螃蟹分离株的抗菌易感性,生物膜形成,编码碳青霉酶的基因的存在以及与生物FILM相关的毒力因子。还测试了消毒剂和SENP对CRAB分离株的抗纤维膜作用。绝大多数测试的分离株是生物膜生产者(91.9%)。在57%,70%和76%的螃蟹分离株中发现了BAP,OMPA和CSUE基因,与非生物产生的生产者(25%)相比,在生物纤维生产国(78.6%)中,CSUE在生物纤维生产国(78.6%)中的普遍性更高。测试的消毒剂比对弱生产者的抗纤维膜对中度和强生物膜产生的影响更好(p <0.01)。SENP对所有测试的浮游症状(MIC范围:0.00015至> 1.25 mg/ml)和生物纤维膜包含的蟹表现出抑制作用,最低生物膜抑制浓度低于0.15 mg/ml,生物纤维抑制浓度低于0.15 mg/ml。总而言之,SENP可以用作有前途的治疗和医疗设备涂料剂,因此是预防生物膜相关感染的替代方法。
摘要 多重耐药性鲍曼不动杆菌感染带来的全球挑战刺激了新治疗策略的发展。我们报道外膜蛋白 W(OmpW)是鲍曼不动杆菌的潜在治疗靶点。本文使用从 ChEMBL 数据集生成的定量结构-活性关系 (QSAR) 模型对 11,648 种天然化合物库进行初步筛选,该数据集包含 >7,000 种化合物,并报告了它们对鲍曼不动杆菌的最低抑菌浓度 (MIC) 值,然后对 OmpW 进行基于结构的虚拟筛选。进行了计算机药代动力学评估以评估这些化合物的药物相似性。发现排名最高的十种化合物的结合能量得分范围为 -7.8 至 -7.0 kcal/mol,其中大多数属于姜黄素类化合物。为了验证这些发现,我们使用微量稀释和时间-杀灭曲线测定法,对一种表现出良好结合稳定性和药代动力学特性的先导化合物——脱甲氧基姜黄素——进行了针对一组鲍曼不动杆菌菌株的测试,以确定其抗菌活性。为了验证该化合物是否与选定的靶标结合,研究了一种 OmpW 缺陷型突变体并将其与野生型进行了比较。我们的结果表明,脱甲氧基姜黄素单一疗法和与粘菌素联合使用对所有鲍曼不动杆菌菌株均有效。最后,发现该化合物可显著降低鲍曼不动杆菌与宿主细胞的相互作用,表明其具有抗毒力特性。总之,这项研究证明了机器学习是一种有前途的策略,可用于发现姜黄素类化合物作为对抗鲍曼不动杆菌感染的抗菌剂。
3 Michelle W. Bowman,“反思 2024 年:货币政策、经济表现和银行监管经验教训”(加州银行家协会 2025 年银行行长研讨会演讲,加州拉古纳海滩,2025 年 1 月 9 日),https://www.federalreserve.gov/newsevents/speech/bowman20250109a.htm
摘要背景/目的:鲍曼不动杆菌是一种重要的院内病原体。为了更好地了解鲍曼不动杆菌 CsuA/BABCDE 菌毛在毒力中的作用,进行了细菌生物膜形成、粘附和碳水化合物介导的抑制研究。方法:克隆鲍曼不动杆菌 ATCC17978 的 CsuA/BABCDE 菌毛产生操纵子(简称 Csu 菌毛),以分析非生物塑料平板上的生物膜形成、细菌对呼吸道上皮人 A549 细胞的粘附和碳水化合物介导的抑制。用于抑制生物膜形成和对 A549 细胞粘附的碳水化合物包括单糖、吡喃糖苷和甘露糖聚合物。结果:将鲍曼不动杆菌ATCC17978的Csu菌毛克隆表达到不产生菌毛的大肠杆菌JM109中,并将其敲除。在电镜和原子力显微镜下观察大肠杆菌JM109/rCsu菌毛产生克隆上重组Csu(rCsu)菌毛丰富,而Csu敲除的鲍曼不动杆菌ATCC17978
人工智能研究和应用正在迅速发展。因此,国会在考虑是否在法案中纳入人工智能定义,以及如果要定义该术语或相关术语时,必然会关注立法的范围以及该定义的当前和未来适用性。在制定立法定义时,需要考虑的因素包括该定义是否足够广泛,不会妨碍法律在人工智能发展和演变过程中的未来适用性,同时又足够狭窄,可以明确法律影响的实体。一些利益相关者认识到定义人工智能的诸多挑战,试图定义可能有助于指导政策制定者的原则。研究表明,用于识别人工智能相关研究的定义不同,可能会导致对人工智能竞争、投资、技术转让和应用预测的分析和结果存在很大差异。1
基于 WGS 的监测大大提高了追踪临床相关病原体多药耐药克隆的全球传播和出现的能力。在本研究中,我们对属于序列类型 ST374 的鲍曼不动杆菌 (菌株 Ac56) 进行了基因组表征和比较分析,该菌株于 1996 年首次在巴西分离。Ac56 的基因组分析预测了总共 5373 个基因,其中 3012 个基因在来自欧洲、亚洲、北美和南美国家的 ST374 鲍曼不动杆菌分离株的九个基因组中是相同的。GoeBURST 分析将 ST374 谱系分为克隆复合体 CC3(国际克隆 IC-III)。ST374 克隆的抗性基因组分析预测了与重金属和临床相关的 β-内酰胺类和氨基糖苷类抗生素耐药性相关的基因。在这方面,在两种密切相关的鲍曼不动杆菌菌株中,内在的 bla ADC 基因与插入序列 IS Aba1 相关;包括 Ac56 菌株,该基因可能与对美罗培南的中等敏感性相关。其他四种耐卡巴培南的鲍曼不动杆菌菌株携带 IS Aba1/bla OXA-23 基因阵列,该基因阵列与转座子 Tn 2008 或 AbaR4 型耐药岛中的 Tn 2006 相关。虽然 ST374 的鲍曼不动杆菌菌株大多数毒力基因是相同的,但来自泰国的三种分离株含有 KL49 荚膜基因座,该基因座先前在高毒力鲍曼不动杆菌 LAC-4 菌株中发现。对三十四种预测质粒的分析显示八个主要组,其中 GR-6(LN − 1)和 GR-2(LN − 2)占主导地位。所有菌株(包括最早的分离株 Ac56)都含有至少一个完整的原噬菌体,但未检测到任何 CRISPR 相关 (cas) 基因。总之,A. baumannii ST374 的基因组数据显示该谱系有潜力成为成功的克隆。
鲍曼不动杆菌是一种世界范围内分布的高耐药率革兰氏阴性细菌,是造成多种医院内感染的元凶。我们应用计算化学基因组学框架来研究将已获批准的药物重新用于治疗鲍曼不动杆菌。这种综合方法包括汇编和准备蛋白质组学数据、识别药物-靶标数据库中的同源蛋白、评估靶标的进化保守性、进行分子对接研究和体外试验。我们选取了七种药物进行实验测定。其中,他伐硼罗表现出最有希望的抗菌活性,最低抑菌浓度 (MIC) 值为 2 μ g/ml,对几种临床相关菌株具有强效活性,在 16 μ g/ml 浓度下对多重耐药菌株的生物膜具有强大的功效。分子对接研究阐明了他伐硼罗在亮氨酰-tRNA 合成酶的编辑和活性域中的结合模式,从而深入了解了其抗菌活性的结构基础。他伐硼罗有望成为一种对抗鲍曼不动杆菌感染的抗菌剂,值得在临床前研究中进一步研究。